Skip to main content
Log in

Influence of impurities on stacking fault energy determination

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

A standard technique used to determine stacking fault energies is the so-called node method in which a measurement of the curvature of partials surrounding an extended node may be related to the fault energy. A basic assumption that is made, either implicitly or explicitly, when employing this technique is that the degree of nodal extension is not influenced by precipitation or segregation effects. Clearly, if the shape or size of a node is influenced in this manner, the measured values of SFE may not be meaningful with regard to interpreting properties such as yield strength, creep behavior, susceptibility to stress-corrosion, and so forth. An example of the dramatic role that impurities can play in distorting the equilibrium dimensions of extended nodes through precipitation effects is presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. S. Williams:Trans. TMS-AIME, 1966, vol. 236, p. 211.

    CAS  Google Scholar 

  2. J. D. Venables:Phil. Mag., 1967, vol. 16, p. 873.

    Article  ADS  CAS  Google Scholar 

  3. G. E. Hollox and R. E. Smallman:J. Appl. Phys., 1966, vol. 37, p. 818.

    Article  ADS  CAS  Google Scholar 

  4. G. E. Hollox and R. E. Smallman:Proc. Brit. Ceram. Soc., 1964, vol. 1, p. 211.

    Google Scholar 

  5. D. A. Robins:Powder Met., 1958, vol. 1, p. 172.

    Google Scholar 

  6. R. G. Lye:Atomic and Electronic Structure of Metals, p. 99, American Society for Metals, Cleveland, 1967.

    Google Scholar 

  7. N. Thompson:Proc. Phys. Soc., 1953, vol. B66, p. 481.

    Article  ADS  Google Scholar 

  8. A. Howie and M. J. Whelan:Proc. Roy. Soc., 1962, vol. A267, p. 206.

    Article  ADS  CAS  Google Scholar 

  9. F. C. Frank:Defects in Crystalline Solids, p. 159, The Physical Society, London, 1955.

    Google Scholar 

  10. S. Amelinckx and W. Dekeyser:Solid State Phys., 1959, vol. 8, p. 325.

    Article  CAS  Google Scholar 

  11. J. D. Venables:Phys. Stat. Sol., 1966, vol. 15, p. 413.

    Article  CAS  Google Scholar 

  12. L. M. Brown:Phil. Mag., 1964, vol. 10, p. 441.

    Article  MATH  ADS  Google Scholar 

  13. A. Howie and P. Swann:Phil. Mag., 1961, vol. 6, p. 1215.

    Article  ADS  CAS  Google Scholar 

  14. R. L. Fleischer, P. B. Price, R. M. Walker, and E. L. Hubbard:Phys. Rev., 1964, vol. 133, p. A1443.

    Article  ADS  Google Scholar 

  15. A. Art, R. Gevers, and S. Amelinckx:Phys. Stat. Sol., 1963, vol. 3, p. 697.

    Article  CAS  Google Scholar 

  16. G. L. Humphrey:J. Am. Chem. Soc., 1951, vol. 73, p. 2261.

    Article  CAS  Google Scholar 

  17. L. Kaufman and E. V. Clougherty: Report No. RTD-TDR-63-4096, Contract AF33(652)-8635, Man Labs, Inc., Cambridge, Mass., 1963, p. 290.

  18. P. O. Schissel and O. C. Trulson:J. Phys. Chem., 1962, vol. 66, p. 1492.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venables, J.D. Influence of impurities on stacking fault energy determination. Metall Trans 1, 2471–2476 (1970). https://doi.org/10.1007/BF03038372

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03038372

Keywords

Navigation