Metallurgical Transactions

, Volume 1, Issue 9, pp 2471–2476 | Cite as

Influence of impurities on stacking fault energy determination

  • John D. Venables


A standard technique used to determine stacking fault energies is the so-called node method in which a measurement of the curvature of partials surrounding an extended node may be related to the fault energy. A basic assumption that is made, either implicitly or explicitly, when employing this technique is that the degree of nodal extension is not influenced by precipitation or segregation effects. Clearly, if the shape or size of a node is influenced in this manner, the measured values of SFE may not be meaningful with regard to interpreting properties such as yield strength, creep behavior, susceptibility to stress-corrosion, and so forth. An example of the dramatic role that impurities can play in distorting the equilibrium dimensions of extended nodes through precipitation effects is presented in this paper.


Boron Burger Vector Stack Fault Energy Cellulose Nitrate Extended Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. S. Williams:Trans. TMS-AIME, 1966, vol. 236, p. 211.Google Scholar
  2. 2.
    J. D. Venables:Phil. Mag., 1967, vol. 16, p. 873.CrossRefADSGoogle Scholar
  3. 3.
    G. E. Hollox and R. E. Smallman:J. Appl. Phys., 1966, vol. 37, p. 818.CrossRefADSGoogle Scholar
  4. 4.
    G. E. Hollox and R. E. Smallman:Proc. Brit. Ceram. Soc., 1964, vol. 1, p. 211.Google Scholar
  5. 5.
    D. A. Robins:Powder Met., 1958, vol. 1, p. 172.Google Scholar
  6. 6.
    R. G. Lye:Atomic and Electronic Structure of Metals, p. 99, American Society for Metals, Cleveland, 1967.Google Scholar
  7. 7.
    N. Thompson:Proc. Phys. Soc., 1953, vol. B66, p. 481.CrossRefADSGoogle Scholar
  8. 8.
    A. Howie and M. J. Whelan:Proc. Roy. Soc., 1962, vol. A267, p. 206.CrossRefADSGoogle Scholar
  9. 9.
    F. C. Frank:Defects in Crystalline Solids, p. 159, The Physical Society, London, 1955.Google Scholar
  10. 10.
    S. Amelinckx and W. Dekeyser:Solid State Phys., 1959, vol. 8, p. 325.CrossRefGoogle Scholar
  11. 11.
    J. D. Venables:Phys. Stat. Sol., 1966, vol. 15, p. 413.CrossRefGoogle Scholar
  12. 12.
    L. M. Brown:Phil. Mag., 1964, vol. 10, p. 441.MATHCrossRefADSGoogle Scholar
  13. 13.
    A. Howie and P. Swann:Phil. Mag., 1961, vol. 6, p. 1215.CrossRefADSGoogle Scholar
  14. 14.
    R. L. Fleischer, P. B. Price, R. M. Walker, and E. L. Hubbard:Phys. Rev., 1964, vol. 133, p. A1443.CrossRefADSGoogle Scholar
  15. 15.
    A. Art, R. Gevers, and S. Amelinckx:Phys. Stat. Sol., 1963, vol. 3, p. 697.CrossRefGoogle Scholar
  16. 16.
    G. L. Humphrey:J. Am. Chem. Soc., 1951, vol. 73, p. 2261.CrossRefGoogle Scholar
  17. 17.
    L. Kaufman and E. V. Clougherty: Report No. RTD-TDR-63-4096, Contract AF33(652)-8635, Man Labs, Inc., Cambridge, Mass., 1963, p. 290.Google Scholar
  18. 18.
    P. O. Schissel and O. C. Trulson:J. Phys. Chem., 1962, vol. 66, p. 1492.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society - ASM International - The Materials Information Society 1970

Authors and Affiliations

  • John D. Venables
    • 1
  1. 1.Research Institute for Advanced StudiesMartin Marietta CorpBaltimore

Personalised recommendations