Advertisement

Metallurgical Transactions

, Volume 1, Issue 9, pp 2383–2389 | Cite as

Stacking fault energy measurement from diffusion

  • R. E. Smallman
  • P. S. Dobson
Article
  • 245 Downloads

Abstract

The annealing kinetics of dislocation loops has been considered from climb theory based on a model involving vacancy diffusion as the rate controlling mechanism. The theory has been applied to fee metals of high, intermediate, and low stacking fault energy to determine both the intrinsic and extrinsic fault energy using transmission electron microscopy. Reliable values are obtained from metals with γ ≳ 70 erg per sq cm but for low γ metals the rate controlling mechanism is shown to be one of jog nucleation and propagation rather than vacancy diffusion. The technique of loop annealing is also shown to be applicable to hep metals such as zinc, magnesium, and cadmium, even when the foil surfaces act as vacancy sources. Results of loop shrinkage and loop growth are analyzed to provide fault energy values for those metals with hep structure.

Keywords

Stack Fault Energy Dislocation Loop Frank Loop Prismatic Loop Diffusion Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Loretto, L. M. Clareborough, and R. L. Segall:Phil. Mag., 1965, vol. 11, p. 459.CrossRefADSGoogle Scholar
  2. 2.
    B. E. P. Beeston, I. L. Dillamore, and R. E. Smallman:Metal Sci. J., 1968, vol. 2, p. 12.Google Scholar
  3. 3.
    J. W. Edington and R. E. Smallman:Phil. Mag., 1965, vol. 11, p. 1109.CrossRefADSGoogle Scholar
  4. 4.
    P. S. Dobson and R. E. Smallman:Proc. Roy. Soc., 1966, vol. A293, p. 423.CrossRefADSGoogle Scholar
  5. 5.
    P. S. Dobson, P. J. Goodhew, and R. E. Smallman:Phil. Mag., 1967, vol. 16, p. 9.CrossRefADSGoogle Scholar
  6. 6.
    D. J. Bacon and A. G. Crocker:Phil. Mag., 1966, vol. 12, p. 195.CrossRefADSGoogle Scholar
  7. 7.
    P. J. Goodhew, P. S. Dobson, and R. E. Smallman:Metal Sci. J., 1967, vol. 1, p. 198.Google Scholar
  8. 8.
    S. Kritzinger, P. S. Dobson, and R. E. Smallman:Phil. Mag., 1967, vol. 16, p. 217.CrossRefADSGoogle Scholar
  9. 9.
    S. Kritzinger, R. E. Smallman, and P. S. Dobson:Acta Met., 1969, vol. 17, p. 49.CrossRefGoogle Scholar
  10. 10.
    K. W. Westmacott, R. E. Smallman, and P. S. Dobson:Metal Sci. J., 1968, vol. 2, p. 177.CrossRefGoogle Scholar
  11. 11.
    R. Hales, P. S. Dobson, and R. E. Smallman:Metal Sci. J., 1968, vol. 2, p. 244.Google Scholar
  12. 12.
    R. Hales, R. E. Smallman, and P. S. Dobson:Proc. Roy. Soc., 1968, vol. A207, p. 71.ADSGoogle Scholar
  13. 13.
    V. N. Rozhanskii, A. A. Predvoditelev, and V. L. Indenbom:Soviet Phys.-Solid State, 1967, vol. 9, p. 593.Google Scholar
  14. 14.
    I. A. Johnston: M.Sc. Thesis, 1968, Birmingham University.Google Scholar
  15. 15.
    D. J. Mazey and R. S. Barnes: Sixth Int. Conf. Elec. Mic., Kyoto, 1966, p. 377.Google Scholar
  16. 16.
    T. E. Volin and R. W. Balluffi:Phys. Stat. Sol., 1968, vol. 25, p. 163.CrossRefGoogle Scholar
  17. 17.
    M. C. Inman and H. R. Tipler:Met. Rev., 1963, vol. 8, p. 105.Google Scholar
  18. 18.
    J. P. Tartour and J. Washburn:Phil. Mag., 1968, vol. 18, p. 1257.CrossRefADSGoogle Scholar
  19. 19.
    I. L. Dillamore, R. E. Smallman, and W. T. Roberts:Phil. Mag., 1964, vol. 9, p. 517.CrossRefADSGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society - ASM International - The Materials Information Society 1970

Authors and Affiliations

  • R. E. Smallman
    • 1
  • P. S. Dobson
    • 2
  1. 1.The University of BirminghamBirminghamEngland
  2. 2.Department of Physical Metallurgy and Science of MaterialsThe University of BirminghamBirminghamUK

Personalised recommendations