Metallurgical Transactions

, Volume 1, Issue 12, pp 3341–3350 | Cite as

Sulfide shape control in high strength low alloy steels

  • Leon Luyckx
  • John R. Bell
  • Alex McLean
  • Michael Korchynsky
Mechanical Behavior


Directionality of mechanical properties—such as toughness and bend formability—is typical of hot rolled steels processed on modern, hot strip mills. In aluminum killed steels, directionality results mainly from elongated (type II) manganese sulfide inclusions. Directionality can be reduced by retaining the original globular shape of the precipitated sulfides. This can be accomplished by promoting the formation of sulfides which are more stable and have a higher melting point than that of manganese sulfide. Thermodynamic considerations indicate that additions of Ti, Zr, Ca, Mg, and rare earths are suitable for this purpose. Experimental work on laboratory heats containing 0.020 to 0.25 pct S involved mainly additions of rare earths (mischmetal or silicides) to a V−Al−N high strength, low alloy steel. Other strong sulfide formers were not utilized either because of too high vapor pressure at steelmaking temperatures or because of their strong interaction with nitrogen. For cerium contents of 0.03 to 0.04 pct, the shape of inclusions, identified as rare earth sulfides, was globular. Control of sulfide shape contributed to a marked improvement in toughness and formability of steel in the direction transverse to the rolling direction. The results have been verified in full scale plant trials.


Sulfide Rare Earth Manganese Sulfide Mischmetal Shelf Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. R. Morgan, T. E. Dancy, and M. Korchynsky:J. Metals, 1965, vol 17, pp. 829–31.Google Scholar
  2. 2.
    C. E. Sims:Trans. TMS-AIME, 1959, vol. 215, pp. 367–93.Google Scholar
  3. 3.
    E. J. Paliwoda: Mechanical Working of Steel 2, Proc. AIME, 1964, vol. 26, pp. 27–47.Google Scholar
  4. 4.
    S. Maekawaet al.:Tetsu to Hagane, 1969, vol. 55, p. S129.Google Scholar
  5. 5.
    J. F. Elliott and M. Gleiser:Thermochemistry for Steelmaking, Vol. I, p. 258, Addison-Wesley, Reading, Mass., 1960.Google Scholar
  6. 6.
    R. L. Fairclothet al.:J. Inorg. Chem., 1968, vol. 30, pp. 499–518.Google Scholar
  7. 7.
    A. L. Feild:AIME Trans., 1923, vol. 69, pp. 848–94.Google Scholar
  8. 8.
    H. A. Tucker, R. T. Coulehan, and W. G. Wilson: Bur. Mines, Rept. Invest. No. 7153, June 1968.Google Scholar
  9. 9a.
    E. J. Lichy, G. C. Duderstadt, and N. L. Samways:J. Metals, 1965, vol. 17, pp. 769–75.Google Scholar
  10. 9b.
    C. E. Sims and F. W. Boulger: Discussion of 9a,J. Metals, 1965, vol. 17, p. 775.Google Scholar
  11. 10.
    J. H. Bucher, G. C. Duderstadt, and K. Piene:J. Iron Steel Inst., 1969, vol. 207, pp. 225–29.Google Scholar
  12. 11.
    J. M. Arrowsmith: BISRA Report SNW(C)/E.7/21, August 1968.Google Scholar
  13. 12.
    W. W. Austin, Jr.:Blast Furnace and Steel Plant, 1952, vol. 50, pp. 416–20.Google Scholar
  14. 13.
    C. E. Sims and C. W. Briggs:J. Metals, 1959, vol. 11, pp. 815–22.Google Scholar
  15. 14.
    R. Kiessling and N. Lange: Non-Metallic Inclusions in Steels, Part II, ISI No. 100, 1966.Google Scholar
  16. 15.
    D. Brown: BISRA Report SNW(C)F77/8, August 1968.Google Scholar
  17. 16.
    H. W. Gillett and E. L. Mack: Bur. Mines Bull. No. 199, 1922, pp. 57–74.Google Scholar
  18. 17.
    LeRoy Eyring:Progress in the Science and Technology of the Rare Earths, Vol. I and II, Pergamon Press-The Macmillan Co., New York, 1964.Google Scholar
  19. 18.
    E. Anderson and J. Spreadborough:Rev. Met., 1967, vol. 64, pp. 177–83.Google Scholar
  20. 19.
    G. A. Lillieqvist and C. G. Mickelson:J. Metals, 1952, vol. 4, pp. 1024–31.Google Scholar
  21. 20.
    J. V. Russel:J. Metals, 1954, vol. 6, pp. 438–42.Google Scholar
  22. 21.
    C. E. Sims and C. W. Briggs: Elect. Furnace Proc., AIME, 1959, vol. 17, pp. 104–24.Google Scholar
  23. 22.
    W. T. Bolkcom and W. F. Knapp: 1958, U.S. Patent no. 2,850,381.Google Scholar
  24. 23.
    N. S. Kreshchanovskiiet al.:Liteinoe Proizv., 1962, no. 11, pp. 3–4.Google Scholar
  25. 24.
    J. D. Grozier and M. Korchynsky:Metal Progr., 1969, vol. 96, Aug., pp. 67–68.Google Scholar
  26. 25.
    R. L. Cryderman, A. P. Coldren, J. R. Bell, and J. D. Grozier:Trans. ASM, 1969, vol. 62, pp. 561–74.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society - ASM International - The Materials Information Society 1970

Authors and Affiliations

  • Leon Luyckx
    • 1
  • John R. Bell
    • 1
  • Alex McLean
    • 2
  • Michael Korchynsky
    • 1
  1. 1.Graham Research LaboratoryJones & Laughlin Steel Corp.Pittsburgh
  2. 2.University of TorontoTorontoCanada

Personalised recommendations