Advertisement

Umweltwissenschaften und Schadstoff-Forschung

, Volume 11, Issue 6, pp 321–328 | Cite as

Mikrobieller PAK-Abbau

Abbau von14C markiertem Benzo[a]pyren durch eine PAK-adaptierte Bakterienmischkultur unter Einfluß eines Alkylpolyglycosid-Tensids
  • Susanne Schwiening
  • Ingolf Schuphan
Originalarbeiten: Abbau von Benzo[a]pyren

Zusammenfassung

Der mikrobielle Abbau des 5-Ring PAK Benzo[a]pyren (BaP) gilt auf Grund der geringen Wasserlöslichkeit dieser Verbindung als limitiert, zu den Abbauvorgängen ist bisher wenig bekannt. Eine aus einer PAK belasteten Bodenprobe isolierte Mikroorganismen-Mischkultur konnte in Minimalmedium14C markiertes BaP im Cometabolismus mit Phenanthren, Fluoranthen, Anthracen und Pyren als Wachstumssubstrate abbauen. Waren die niederkernigen PAK mineralisiert, stagnierte der Abbau von BaP. Erneute Zugabe des PAK-Gemischs ins Kulturmedium führte zu einem wieder einsetzenden Abbau von BaP. Ein nichtionisches Tensid vom Typ eines Alkylpolyglycosids (Plantacare 2000 UP) erhöhte durch Solubilisierung die Konzentration von BaP im Kulturmedium. Der BaP-Abbau wurde bei Vorliegen höherer Plantacare-Konzentrationen oberhalb der kritischen Micellbildungskonzentration (CMC) komplett gehemmt. Gaschromatographische Untersuchungen zeigten, daß auch der Abbau der 3- und 4-Ring PAK inhibiert wurde. Wurde das Tensid auf Konzentrationen unterhalb der CMC abgebaut, so konnte eine verstärkte Mineralisation von BaP einsetzen, welche bis zu 24% in 384 Tagen erreichte.

Schlagwörter

14C-BaP Alkylpolyglycosid Altlastensanierung, biologische Benzo[a]pyren mikrobieller Abbau Polycyclische Aromatische Kohlenwasserstoffe (PAK) Tenside 

Degradation of14C labelled benzo[a]pyrene by a PAH-adapted mixed bacterial culture in the presence of an alkylpolyglycoside-surfactant

Abstract

The biodegradation of the five ring PAH benzo[a]pyrene (BaP) is assumed to be limited by the low water solubility of this compound. A mixed culture of microorganisms — isolated from a PAH-contaminated soil — was able to degrade14C labelled BaP in mineral medium by cometabolism with phenanthrene, fluoranthene, anthracene and pyrene as sources of carbon and energy. The mineralisation of these compounds to low levels resulted in an inhibition of the degradation of BaP. After the new addition of the four PAH compounds to the culture medium the mineralisation of BaP started again. A non-ionic surfactant of the alkylpolyglycoside type (Plantacare 2000 UP) increased the concentration of BaP in the culture medium because of solubilization. At high Plantacare concentrations, the degradation of BaP was completely inhibited above the critical micelle concentration (cmc). The degradation of the three and four ring PAHs was also inhibited. If the surfactant was metabolised to concentrations below the cmc, an increase of mineralisation of BaP could occur up to 24% in 384 days.

Keywords

14C-BaP alkylpolyglycoside Benzo[a]pyrene hazardous waste site, clean-up, biological microbial degradation polycyclic aromatic hydrocarbons (PAH) surfactants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alef, K. (1990): Bestimmung mikrobieller Aktivität und Biomasse in Boden und Kompost mit der Dimethylsulfoxid-Reduktion. UWSF — Z. Umweltchem. Ökotox.2, 76–78CrossRefGoogle Scholar
  2. Aronstein, B.N.;Calvillo, Y.M.;Alexander, M. (1991): Effect of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil. Environ. Sci. Technol.25, 1728–1731CrossRefGoogle Scholar
  3. Bartha, R.;Pramer, D. (1965): Features of a flask and method for measuring the persistence and biological effects of pesticides in soil. Soii Science100, 68–70CrossRefGoogle Scholar
  4. Boethling, R.S. (1984): Biodegradation testing of insoluble chemicals. Environ. Toxicol. Chem.3, 5–7CrossRefGoogle Scholar
  5. Bouchez, M.;Blanchet, D.;Vandecasteele, J.-P. (1995): Substrate availability in phenanthrene biodegradation: transfer mechanism and influence on metabolism. Appl. Microbiol. Biotechnol.43, 952–960CrossRefGoogle Scholar
  6. Bouchez, M.;Blanchet, D.;Besnainou, B.;Leveau, J.-V.;Vandecasteele, J.-P. (1997): Kinetic studies of biodegradation of insoluble compounds by continous determination of oxygen consumption. J. Appl. Microbiol.82, 310–316CrossRefGoogle Scholar
  7. Bunzel, S.;Niebelschutz, H.;Vollenbroich, D.;Vater, J. (1995): Verwendung von Biotensiden bei der Sanierung von Hydraulikölschäden. Terra Tech4, 62–64Google Scholar
  8. Bury, S.J.;Miller, C.A. (1993): Effect of miceliar solubilization on biodegradation rates of hydrocarbons. Environ. Sci. Technol.27, 104–110CrossRefGoogle Scholar
  9. Carmichael, L.M.;Pfaender, F.K. (1997): The effect of inorganic and organic supplements on the microbial degradation of phenanthrene and pyrene in soils. Biodegradation8, 1–13CrossRefGoogle Scholar
  10. Cerniglia, C.E. (1992): Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation3, 351–368CrossRefGoogle Scholar
  11. Churchill, P.F.;Dudley, R.J.;Churchill, S.A. (1995): Surfactant-enhanced bioremediation. Waste Management15, 371–377CrossRefGoogle Scholar
  12. Cutright, T.J. (1995): A feasible approach to the bioremediation of contaminated soil: from lab-scale to field test. Fresenius Envir. Bull.4, 67–73Google Scholar
  13. Dechema (1992): Labormethoden zur Beurteilung der biologischen Bodensanierung. Klein, J. (Hrsg.). DECHEMA, Frankfurt am MainGoogle Scholar
  14. Deschênes, L.;Lafrance, P.;Villeneuve, J.-P.;Samson, R. (1996): Adding sodium dodecyl sulfate and Pseudomonas aeruginosa UG2 biosurfactants inhibits polycyclic aromatic hydrocarbon biodegradation in a weathered creosote-contaminated soil. Appl. Microbiol. Biotechnol.46, 638–646CrossRefGoogle Scholar
  15. Edwards, D.A.;Liu, Z.;Luthy, R.G. (1991a): Surfactant-enhanced solubility of hydrophobic organic compounds in water and in soil-water systems. In: Baker, R.A. (Hrsg.): Organic substances and sediments in water. Vol. 2. Boca Raton, Lewis Publishers, S. 383–404Google Scholar
  16. Edwards, D.A.;Luthy, R.G.;Liu, Z. (1991b): Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environ. Sci. Technol.25, 127–133CrossRefGoogle Scholar
  17. Edwards, D.A.; Laha, S.; Liu, Z.; Luthy, R.G. (1992a): Solubilization and biodegradation of hydrophobic organic compounds in soilaqueous systems with nonionic surfactants. In: Sabatini, D.A.; Knox, R.C. (Hrsg.): Transport and Remediation of Subsurface Contaminants: colloidal, interfacial, and surfactant phenomena. Washington D.C., ACS Symposium Series, S. 159–168Google Scholar
  18. Edwards, D.A.;Liu, Z.;Luthy, R.G. (1992b): Interactions between nonionic surfactant monomers, hydrophobic organic compounds and soil. Wat. Sci. Tech.26, 147–158Google Scholar
  19. Efroymson, R.A.;Alexander, M. (1991): Biodegradation by an Arthrobacter species of hydrocarbons partitioned into an organic solvent. Appl. Envrion. Microbiol.57, 1441–1447Google Scholar
  20. Gibson, D.T.;Mahadevan, V.;Jerina, D.M.;Yagi, H.;Yeh, H.J.C. (1975): Oxidation of the carcinogens benzo[a]pyrene and benzo[a]anthracene to dihydrodiols by a bacterium. Science189, 295–297CrossRefGoogle Scholar
  21. Grimberg, S.J.;Stringfellow, W.T.;Aitken, M.D. (1996): Quantifying the biodegradation of phenanthrene by Pseudomonas stutzeri P16 in the presence of a nonionic surfactant. Appl. Environ. Microbiol.62, 2387–2392Google Scholar
  22. Guha, S.;Jaffé, P.R. (1996): Biodegradation kinetics of phenanthrene partitioned into the micellar phase of nonionic surfactants. Environ. Sci. Technol.30, 605–611CrossRefGoogle Scholar
  23. Hughes, J.B.;Beckles, D.M.;Chandra, S.D.;Ward, C.H. (1997): Utilization of bioremediation processes for the treatment of PAH-contaminated sediments. J. Ind. Microbiol. Biotechnol.18, 152–160CrossRefGoogle Scholar
  24. Jiminez, I.Y.;Bartha, R. (1996): Solvent-augmented mineralization of pyrene by a Mycobacterium sp. Appl. Environ. Microbiol.62, 2311–2316Google Scholar
  25. Juhasz, A.L.;Britz, M.L.;Stanley, G.A. (1996): Degradation of high molecular weight polycyclic aromatic hydrocarbons by Pseudomonas cepacia. Biotechnol. Lett.18, 577–582CrossRefGoogle Scholar
  26. Juhasz, A.L.;Britz, M.L.;Stanley, G.A. (1997): Degradation of fluoranthene, pyrene, benz[a]anthracene and dibenz[a,h]anthracene by Burkolderia cepacia. J. Appl. Microbiol.83, 189–198CrossRefGoogle Scholar
  27. Kästner, M.;Mahro, B.;Wienberg, R. (1993): Biologischer Schadstoffabbau in kontaminierten Böden unter besonderer Berücksichtigung der Polyzyklischen Aromatischen Kohlenwasserstoffe. In: Stegmann, R. (Hrsg.), Hamburger Berichte 5, Bonn, EconomicaGoogle Scholar
  28. Keuth, S.;Rehm, H.-J. (1991): Biodegradation of phenanthrene by Arthrobacter polychromogenes isolated from a contaminated soil. Appl. Microbiol. Biotechnol.34, 804–808CrossRefGoogle Scholar
  29. Kirk, T.K.;Schultz, E.;Connors, W.J.;Lorenz, F.L.;Zeikus, J.G. (1978): Influence of culture parameters on lignin metabolism by Phanerochaete chysosporium. Arch. Microbiol.117, 277–285CrossRefGoogle Scholar
  30. Köhler, A. (1992): Zur Problematik der biologischen Verfügbarkeit von polycyclischen aromatischen Kohlenwasserstoffen untersucht am Beispiel des Phenanthrenabbaus. Diss. Uni. StuttgartGoogle Scholar
  31. Laha, S.;Luthy, R.G. (1991): Inhibition of phenanthrene mineralization by nonionic surfactants in soil-water systems. Environ. Sci. Technol.25, 1920–1930CrossRefGoogle Scholar
  32. Liu, Z.;Laha, S.;Luthy, R.G. (1991): Surfactant solubilization of polycyclic aromatic hydrocarbon compounds in soil-water suspensions. Wat. Sci. Tech.23, 475–485Google Scholar
  33. Liu, Z.;Jacobson, A.M.;Luthy, R. (1995): Biodegradation of naphthalene in aqueous nonionic surfactant systems. Appl. Environ. Microbiol.61, 145–151Google Scholar
  34. Loew, G.H.;Wong, J.;Philips, J.;Hjelmeland, L.;Pack, G. (1978): Quantum chemical studies of the metabolism of benzo(a)pyrene. Cancer Biochem. Biophys.2, 123–130Google Scholar
  35. Madsen, T.;Kristensen, P. (1997): Effects of bacterial inoculation and nonionic surfactants on degradation of polycyclic aromatic hydrocarbons in soil. Environ. Toxicol. Chem.16, 631–637CrossRefGoogle Scholar
  36. Pfennig, N.;Lippert, K.D. (1966): Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Archiv für Mikrobiologie55, 245–256CrossRefGoogle Scholar
  37. Roch, F.;Alexander, M. (1995): Biodegradation of hydrophobic compounds in the presence of surfactants. Environ. Toxicol. Chem.14, 1151–1158CrossRefGoogle Scholar
  38. Schneider, J.;Grosser, R.;Jayasimhulu, K.;Xue, W.;Warshawsky, D. (1996): Degradation of pyrene, benz[a]anthracen, and benzo [a]-pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site. Appl. Environ. Microbiol.62, 13–19Google Scholar
  39. Stucki, G.;Alexander, M. (1987): Role of dissolution rate and solubility in biodegradation of aromatic compounds. Appl. Environ. Microbiol.53, 292–297Google Scholar
  40. Tiehm, A. (1994): Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl. Environ. Microbiol.60, 258–263Google Scholar
  41. Tiehm, A.;Stieber, M.;Werner, P.;Frimmel, F.H. (1997): Surfactant-enhanced mobilization and biodegradation of polycyclic aromatic hydrocarbons in manufactured gas plant soil. Environ. Sci. Technol.31, 2570–2576CrossRefGoogle Scholar
  42. Tsomides, H.J.;Hughes, J.B.;Thomas, J.M.;Ward, C.H. (1995): Effect of surfactant addition on phenanthrene biodegradation in sediments. Environ. Toxicol. Chem.14, 953–959CrossRefGoogle Scholar
  43. Volkering, F.;Breure, A.M.;Sterkenburg, A.;van Andel, J.G. (1992): Microbial degradation of polycyclic aromatic hydrocarbons: effect of substrate availability on bacterial growth kinetics. Appl. Microbiol. Biotechnol.36, 548–552CrossRefGoogle Scholar
  44. West, C.C.;Harwell, J.H. (1992): Surfactants and subsurface remediation. Environ. Sci. Technol.26, 2324–2330CrossRefGoogle Scholar
  45. Wilson, S.C.;Jones, K.C. (1993): Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ. Pollut.81, 229–249CrossRefGoogle Scholar
  46. Wodzinski, R.S.;Coyle, J.E. (1974): Physical state of phenanthrene for utilization by bacteria. Appl. Microbiol.27, 1081–1084Google Scholar
  47. Ye, D.;Siddiqi, M.A.;Maccubbin, A.E.;Kumar, S.;Sikka, H.C. (1996): Degradation of polynuclear aromatic hydrocarbons by Sphingomonas paucimobilis. Environ. Sci. Technol.30, 136–142CrossRefGoogle Scholar
  48. Zhang, Y.;Maier, W.J.;Miller, R.M. (1997): Effect of rhamnolipids on the dissolution, bioavailability, and biodegradation of phenanthrene. Envrion. Sci. Technol.31, 2211–2217CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  1. 1.Lehrstuhl für Biologie V, Ökologie, Ökotoxikologie, ÖkochemieRheinisch-Westfälische Technische Hochschule AachenAachen

Personalised recommendations