New Generation Computing

, Volume 23, Issue 3, pp 245–258 | Cite as

Block cipher based on reversible cellular automata

Special Issue


We propose a new encryption algorithm relying on reversible cellular automata (CA). The behavior complexity of CA and their parallel nature makes them interesting candidates for cryptography. The proposed algorithm belongs to the class of symmetric key systems.


Cryptography Reversible Cellular Automata Block Ciphers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Menezes, A., van Oorschot, P. and Vanstone, S.,Handbook of Applied Cryptography, CRC Press, 1996.Google Scholar
  2. 2).
    Stallings, W.,Cryptography and Network Security (Third Edition), Prentice Hall, 2003.Google Scholar
  3. 3).
    Guan, P., “Cellular Automaton Public-Key Cryptosystem,”Complex Systems 1 pp. 51–56, 1987.MATHMathSciNetGoogle Scholar
  4. 4).
    Seredynski, F., Bouvry, P. and Zomaya, A.Y., “Cellular Programming and Symmetric Key Cryptography Systems,” inProc. of the Genetic and Evolutionary Computation — GECCO 2003 (E. Cantú-Paz et al. eds.),LNCS 2724, pp. 1369–1381, Springer-Verlag, 2003.Google Scholar
  5. 5).
    Toffoli, T. and Margolus, N., “Invertible Cellular Automata: A Review,”Physica, Vol. D 45, pp. 229–253, 1990.MATHMathSciNetGoogle Scholar
  6. 6).
    Tomassini, M. and Perrenoud, M., “Stream Ciphers with One and Two-Dimensional Cellular Automata,” inProc. of the Parallel Problem Solving from Nature — PPSN VI (M. Schoenauer at al. eds.),LNCS, 1917, pp. 722–731, Springer-Verlag, 2000.Google Scholar
  7. 7).
    Wolfram, S.,A New Kind of Science, Wolfram Media, 2002.Google Scholar
  8. 8).
    Wolfram, S., “Cryptography with Cellular Automata,” inProc. of the Advances in Cryptology: Crypto ’85 (H.C. Williams ed.),LNCS, 218, pp. 429–432, Springer-Verlag, 1985.Google Scholar
  9. 9).
    Gutowitz, H.A., “Cryptography with Dynamical Systems,” inCellular Automata and Cooperative Phenomena (E. Goles at al. eds.), Kluwer Academic Press, 1993.Google Scholar
  10. 10).
    Feistel, H., “Cryptography and Computer Privacy,”Scientific American, 228, 5, pp. 15–23, 1973.CrossRefGoogle Scholar
  11. 11).
    Kam, J. and Davida, G., “Structured Design of Substitution-Permutation Encryption Networks,”IEEE Transactions on Computers, C-28, 10, pp. 747–753, 1979.MATHCrossRefMathSciNetGoogle Scholar
  12. 12).
    Webster, A.F. and Tavares, S.E., “On the Design of S-Boxes,” inProc. of the Advances in Cryptology: Crypto ’85 (H.C. Williams ed.),LNCS, 218, pp. 523–534, Springer-Verlag, 1985.Google Scholar

Copyright information

© Ohmsha, Ltd. and Springer 2005

Authors and Affiliations

  1. 1.Faculty of Science, Technology and CommunicationUniversity of LuxembourgLuxembourg-KirchbergLuxembourg

Personalised recommendations