Experimental study of composite medium with simultaneously negative permeability and permittivity

  • Qiang Sui
  • Fang Li


This paper focuses on a composite medium structure that exhibits simultaneously negative values of effective permeability and permittivity, and our experimental study in an anechoic chamber. The experiment results show that the artificial medium, based on a periodic array of interspaced conducting nonmagnetic split ring resonators and continuous metallic wires, can have a simultaneously negative effective permeability and permittivity within a frequency region in the microwave regime under certain linearly polarized waves.


permittivity permeability negative index of refraction split ring resonator LHM RHM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Veselago, V. G., The electrodynamics of substances with simultaneously negative values of ε and μ, Sov. Phys. Usp., 1968, 10: 509–514.CrossRefADSGoogle Scholar
  2. 2.
    Pendry, J. B., Holden, A. J., Stewart, W. J. et al., Extremely low frequency plasmons in metallic mesostructures, Phys. Rev. Lett., 1996, 76: 4773–4776.CrossRefADSGoogle Scholar
  3. 3.
    Pendry, J. B., Holden, A. J., Robbins, D. J. et al., Low frequency plasmons in thin-wire structures, J. Phys: Condens. Matter, 1998, 10: 4785–4809.CrossRefADSGoogle Scholar
  4. 4.
    Smith, D. R., Vier, D. C., Padilla, W. et al., Loop-wire medium for investigating plasmons at microwave frequencies, Appl. Phys. Lett., 1999, 75: 1425–1427.CrossRefADSGoogle Scholar
  5. 5.
    Pendry, J. B., Holden, A. J., Robbins, D. J. et al., Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans Microwave Theory and Tech., 1999, 47: 2075–2084.CrossRefGoogle Scholar
  6. 6.
    Weiland, T., Cchuhmann, R., Greegor, R. B. et al., Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments, J. Appl. Phys., 2001, 90: 5419–5424.CrossRefADSGoogle Scholar
  7. 7.
    Markos, P., Soukoulis, C. M., Numerical studies of left-handed materials and arrays of split ring resonators, Phys. Rev. E, 2002, 65: 036622-1–036622-8.CrossRefADSGoogle Scholar
  8. 8.
    Smith, D. R., Schultz, S., Markos, P. et al., Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients, Phys. Rev. B, 2002, 65: 195104-1–195104-5.CrossRefADSGoogle Scholar
  9. 9.
    Shelby, R. A., Smith, D. R., Schultz, S., Experimental verification of a negative index of refraction, Science, 2001, 292: 77–79.CrossRefADSGoogle Scholar
  10. 10.
    Caloz, C., Chang, C. C., Itoh, T., Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations, J. Appl. Phys., 2001, 90: 5483–5486.CrossRefADSGoogle Scholar
  11. 11.
    Ziolkowski, R. W., Superluminal transmission of information through an electromagnatic metamaterial, Phys. Rev. E, 2001, 63: 046604-1–046604-13.CrossRefADSGoogle Scholar
  12. 12.
    Pendry, J. B., Negative refraction makes a perfect lens, Phys. Lett., 2000, 85: 3966–3969.CrossRefGoogle Scholar
  13. 13.
    Smith, D. R., Padilla, W. J., Vier, D. C. et al., Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett., 2000, 84: 4184–4187.CrossRefADSGoogle Scholar
  14. 14.
    Shelby, R. A., Smith, D. R., Nemat-Nasser, S. C. et al., Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial, Appl. Phys. Lett., 2001, 78: 489–491.CrossRefADSGoogle Scholar
  15. 15.
    Bayindir, M., Aydin, K., Ozbay, E. et al., Transmission properties of composite metamaterials in free space, Appl. Phys. Lett., 2002, 81: 120–122.CrossRefADSGoogle Scholar
  16. 16.
    Garcia, N., Nieto-Vesperinas, M., Is there an experimental verification of a negative index of refraction yet? Opt. Lett., 2002, 27: 885–887.CrossRefADSGoogle Scholar
  17. 17.
    Valanju, P. M., Walser, R. M., Valanju, A. P., Wave refraction in negative-index media: always positive and very inhomogeneous, Phys. Rev. Lett., 2002, 89: 187401-1–187401-4.ADSGoogle Scholar
  18. 18.
    Jackson, J. D., Classical Electrodynamics, 2nd ed., New York: John Wiley & Sons, Inc., 1975, 284–326.MATHGoogle Scholar
  19. 19.
    Gong Zhongling, Xu Chenghe, Modern Electromagnetic Theory (in Chinese). Beijing: Publishing Company of Beijing University, 1990, 32–42.Google Scholar
  20. 20.
    Liao Cheng’en, Foundations for Microwave Technology (in Chinese), Xi’an: Publishing Company of Xidian University, 1994, 184–205.Google Scholar

Copyright information

© Science in China Press 2004

Authors and Affiliations

  1. 1.Institute of ElectronicsChinese Academy of SciencesBeijingChina
  2. 2.School of InformationBeijing Broadcasting InstituteBeijingChina

Personalised recommendations