New Generation Computing

, Volume 20, Issue 4, pp 317–337 | Cite as

Mathematical models of quantum computation

Invited Paper

Abstract

In this paper, we introduce two mathematical models of realistic quantum computation. First, we develop a theory of bulk quantum computation such as NMR (Nuclear Magnetic Resonance) quantum computation. For this purpose, we define bulk quantum Turing machine (BQTM for short) as a model of bulk quantum computation. Then, we define complexity classes EBQP, BBQP and ZBQP as counterparts of the quantum complexity classes EQP, BQP and ZQP, respectively, and show that EBQP=EQP, BBQP=BQP and ZBQP=ZQP. This implies that BQTMs are polynomially related to ordinary QTMs as long as they are used to solve decision problems. We also show that these two types of QTMs are also polynomially related when they solve a function problem which has a unique solution. Furthermore, we show that BQTMs can solve certain instances of NP-complete problems efficiently.

On the other hand, in the theory of quantum computation, only feed-forward quantum circuits are investigated, because a quantum circuit represents a sequence of applications of time evolution operators. But, if a quantum computer is a physical device where the gates are interactions controlled by a current computer such as laser pulses on trapped ions, NMR and most implementation proposals, it is natural to describe quantum circuits as ones that have feedback loops if we want to visualize the total amount of the necessary hardware. For this purpose, we introduce a quantum recurrent circuit model, which is a quantum circuit with feedback loops. LetC be a quantum recurrent circuit which solves the satisfiability problem for a blackbox Boolean function includingn variables with probability at least 1/2. And lets be the size ofC (i.e. the number of the gates inC) andt be the number of iterations that is needed forC to solve the satisfiability problem. Then, we show that, for those quantum recurrent circuits, the minimum value ofmax(s, t) isO(n22n/3).

Keywords

Quantum Computing Quantum Complexity Classes Quantum Algorithms Quantum Turing Machines Quantum Circuits 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Barenco, A., Bennett, C. H., Cleve, R., DiVincenzo, D. P., Margolus, N., Shor, P., Sleator, T., Smolin, J. and Weinfurter, H., “Elementary Gates for Quantum Computation,”Physical Review, A, 52, pp. 3457–3467, 1995.CrossRefGoogle Scholar
  2. 2).
    Beals, R., Buhrman, H., Cleve, R., Mosca, M. and de Wolf, R., “Tight Quantum Bounds by Polynomials,”preprint quant-ph, 9802049, 1998.Google Scholar
  3. 3).
    Bennett, C. H., “Logical Reversibility of Computation,”JBM J. Res. Dev., 6, pp. 525–532, 1973.MathSciNetCrossRefGoogle Scholar
  4. 4).
    Bennett, C. H., Bernstein, E., Brassard, G. and Vazirani, U., “Strengths and Weaknesses of Quantum Computing,”SIAM Journal on Computing, 26, 5, pp. 1510–1523, 1997.MathSciNetCrossRefGoogle Scholar
  5. 5).
    Bernstein, E. and Vazirani, U. V., “Quantum complexity Theory,”SIAM Journal on Computing, 26, 5, pp. 1411–1473, 1997 (An earlier version appeared inProc. of 25th Annual ACM Symposium on Theory of Computing, pp. 11–20, 1993).MathSciNetCrossRefGoogle Scholar
  6. 6).
    Boyer, M., Brassard, G., Høyer, P. and Tapp, A., “Tight Bounds on Quantum Searching,”Fortschritte der Physik, 46, pp. 493–505, 1998. (An earlier version appeared inProc. of 1996 Workshop on Physics and Computation), http://xxx.lanl.gov/archive/quant-ph/9605034 (1996).CrossRefGoogle Scholar
  7. 7).
    Brun, T. and Schack, R.: “Realizing the Quantum Baker's Map on an NMR Quantum Computer,”quant-ph, 9807050, 1998.Google Scholar
  8. 8).
    Chuang, I. L., Gershenfeld, N. and Kubinec, M. G., “Experimental Implementation of Fast Quantum Serching,”Phys. Rev. Letters, 80, 15, pp. 3408–3411, 1998.CrossRefGoogle Scholar
  9. 9).
    Chuang, I. L., Gershenfeld, N., Kubinec, M. G. and Leung, D. W., “Bulk Quantum Computation with Nuclear Magnetic Resonance: Theory and Experiment,” inProc. of R. Soc. Lond., A 454, pp. 447–467, 1998.CrossRefGoogle Scholar
  10. 10).
    Cory, D. G., Fahmy, A. F. and Havel, T. F., “Ensemble Quantum Computing by Nuclear Magnetic Resonance Spectroscopy,” inProc. of Natl. Acad. Sci. 94, pp. 1634–1639, 1997.Google Scholar
  11. 11).
    Deutsch, D., “Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer,” inProc. of R. Soc. Lond., A 400, pp. 97–117, 1985.MathSciNetCrossRefGoogle Scholar
  12. 12).
    Deutsch, D., “Quantum Computational Networks,” inProc. of R. Soc. Lond., A 425, pp. 73–90, 1989.MathSciNetCrossRefGoogle Scholar
  13. 13).
    Deutsch, D. and Jozsa, R., “Rapid Solution of Problems by Quantum Computation,” inProc. of R. Soc. Lond., A 439, pp. 553–558, 1992.MathSciNetCrossRefGoogle Scholar
  14. 14).
    Dorai, K., Kumar, A., and Kumar A., “Implementing Quantum Logic Operations, Pseudo-pure States and the Deutsch-Jozsa Algorithm Using Noncommuting Selective Pulses in NMR,”quant-ph, 9906027, 1999.Google Scholar
  15. 15).
    Ekert, A. and Jozsa, R., “Quantum Computation and Shor's Factoring Algorithm,”Reviews of Modern Physics 68, 3, pp. 733–753, July 1996.MathSciNetCrossRefGoogle Scholar
  16. 16).
    Fang, X., Zhu, X., Feng, M., Mao, X. and Du, F., “Experimental Implementation of Dense Coding Using Nuclear Magnetic Resonance,”quant-ph, 9906041, 1999.Google Scholar
  17. 17).
    Feynman, R., “Simulating Physics with Computers,”International Journal of theoretical Physics, 21, pp. 467–488, 1982.MathSciNetCrossRefGoogle Scholar
  18. 18).
    Feynman, R., “Quantum Mechanical Computers,”Foundations of Physics, 16, pp. 507–531, 1986.MathSciNetCrossRefGoogle Scholar
  19. 19).
    Fu, L., Luo, J., Xiao, L. and Zeng, X., “Experimental Realization of Discrete Fourier Transformation on NMR Quantum Computer,”quant-ph, 9905083, 1999.Google Scholar
  20. 20).
    Gershenfeld, N. and Chuang, I. L.,Science, 275, pp. 350, 1997.MathSciNetCrossRefGoogle Scholar
  21. 21).
    Grover, L., “A Fast Quantum Mechanical Algorithm for Database Search,” inProc. of 28th Annual ACM Symposium on Theory of Computing, ACM, New York, pp 212–219, 1996.Google Scholar
  22. 22).
    Grover, L., “Quantum Mechanics Helps in Searching for a Needle in a Haystack,”Physical Review Letters, pp. 325–328, 1997.CrossRefGoogle Scholar
  23. 23).
    Havel, T. F., Somaroo, S. S., Tseng, C.-H. and Croy, D. G., “Principles and Demonstrations of Quantum Information Processing by NMR Spectroscopy,”quant-ph, 9812086, 1998.Google Scholar
  24. 24).
    Jones, J. A. and Mosca, M., “Approximate Quantum Counting on an NMR Ensemble Quantum Computer,”quant-ph, 9808056, 1998.Google Scholar
  25. 25).
    Jones, J. A., and Knill, E., “Efficient Refocussing of One Spin and Two Spin Interactions for NMR Quantum Computation,”quant-ph, 9905008, 1999.Google Scholar
  26. 26).
    Kunihiro N. and Yamashita S., “New Algorithms for Factoring and Discrete logarithm with NMR Quantum Computers,” in Proc of ERATO Workshop on Quantum Information Science 2001, pp. 52, 2001.Google Scholar
  27. 27).
    Linden, N., Barjat, H. and Freeman, R., “An Implementation of the Deutsch-Jozsa Algorithm on a Three-qubit NMR Quantum Computer,”quant-ph, 9808039, 1998.Google Scholar
  28. 28).
    Linden, N. and Popescu, S., “Good Dynamics Versus Bad Kinematics. Is Entanglement needed for Quantum Computation?,”quant-ph, 9906008, 1999.Google Scholar
  29. 29).
    Lloyd, S. and Slotine, J. J. E., “Quantum Feedback with Weak Measurements,”preprint quant-ph, 9905064, 1999.Google Scholar
  30. 30).
    Luo, J. and Zeng, X., “NMR Quantum Computation with a Hyperpolarized Nuclear Spin Bulk,”quant-ph, 9811044, 1998.Google Scholar
  31. 31).
    Marx, R., Fahmy, A. F., Myers, J. M., Bermel, W. and Glaser, S. J., “Realization of a 5-Bit NMR Quantum Computer Using a New Molecular Architecture,quant-ph, 9905087, 1999.Google Scholar
  32. 32).
    Pravia, M., Fortunato, E., Weinstein, Y., Price, M. D., Teklemariam, G., Nelson, R. J., Sharf, Y., Somaroo, S., Tseng, C. H., Havel, T. F. and Cory, D. G., “Observations of Quantum Dynamics by Solution-State NMR Spectroscopy,”quant-ph, 9905061, 1999.Google Scholar
  33. 33).
    Ruskov, R. and Korotkov, A. N., “Quantum Feedback Control of a Solid-state Two-level System,”preprint cond-mat, 0107280, 2001.Google Scholar
  34. 34).
    Schulman, L. J. and Vazirani, U., “Scalable NMR Quantum Computation,”quant-ph, 9804060, 1998.Google Scholar
  35. 35).
    Shor, P. W., “Algorithms for Quantum Computation: Discrete Log and Factoring,” inProc. of the 35th Annual IEEE Symposium on Foundations of Computer Science, 1994, pp. 124–134. Also in Special Issue ofSIAM. J. Comp., October, 1997.Google Scholar
  36. 36).
    Simon, D. R., “On the Power of Quantum Computation,” inProc. of the 35th Annual IEEE Symposium on Foundations of Computer Science, 1994, pp. 116–123. Also in Special Issue ofSIAM J. Comp., October, 1997.Google Scholar
  37. 37).
    Somaroo, S., Tseng, C. H., Havel, T. F., Laflamme, R. and Cory, D. G., “Quantum Simulations on Quantum Computer,”quant-ph, 9905045, 1999.Google Scholar
  38. 38).
    Vandersypen, L. M. K., Yannoni, C. S., Sherwood, M. H. and Chuang, I. L., “Realization of Effective Pure States for Bulk Quantum Computation,”quant-ph, 9905041, 1999.Google Scholar
  39. 39).
    Valiant, L. G. and Vazirani, V. V., “NP is as Easy as Detecting Unique Solutions”Theoretical Computer Science, 47, pp. 85–93, 1986.MathSciNetCrossRefGoogle Scholar
  40. 40).
    Wegener, I.,The Complexity of Boolean Functions, Wiley-Teubner Series in Computer Science, 1987.Google Scholar
  41. 41).
    Wei, H., Xue, X. and Morgera, S. D., “NMR Quantum Automata in Doped Crystals,”quant-ph, 9805059, 1998.Google Scholar
  42. 42).
    Weinstein, Y. S., Lloyd, S. and Cory D. G., “Implementation of the Quantum Fourier Transform,”quant-ph, 9906059, 1999.Google Scholar
  43. 43).
    Yao, A., “Quantum Circuit Complexity,” inProc. of the 34th Symposium on Foundations of Computer Science, pp. 352–361, IEEE Press, 1993.Google Scholar

Copyright information

© Ohmsha, Ltd. and Springer 2002

Authors and Affiliations

  1. 1.Department of Information and Communication EngineeringThe University of Electro-CommunicationsTokyoJapan

Personalised recommendations