New Generation Computing

, Volume 21, Issue 4, pp 339–345 | Cite as

Quantum Bit-commitment for small storage based on quantum one-way permutations

Special Feature


We propose a quantum bit-commitment scheme based on quantum one-way permutations with the unconditionally binding and computationally concealing property. Our scheme reduces exponentially the number of bits which the receiver needs to store until, the opening phase compared with the classical counterpart.


Bit-Commitment Error Correcting Code One-Way Permutation Quantum Computation Quantum Protocol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Bennett, C. H. and Brassard, G., “An Update on Quantum Cryptography,”Advances in Cryptology, inProc. of CRYPTO 84, 19–22 Aug., 1984, (Blakley, G. R. and Chaum, D. eds.),Lecture Notes in Computer Science, 196, Springer-Verlag, 1985, pp. 475–480.Google Scholar
  2. 2).
    Buhrman, H., Cleve, R., Watrous, J. and de Wolf, R., “Quantum Fingerprinting,”Physical Review Letters,87,16, 2001.Google Scholar
  3. 3).
    Crépeau, C., Légaré, F. and Salvail, L., “How to Convert the Flavor of a Quantum Bit Commitment,” inAdvances in Cryptology—EUROCRYPT2001, pp. 60–77, 2001.Google Scholar
  4. 4).
    Dumais, P., Mayers, D. and Salvail, L., “Perfectly Concealing Quantum Bit Commitment from Any Quantum One-way Permutation,” inAdvances in Cryptology—EUROCRYPT2000, pp. 300–315, 2000.Google Scholar
  5. 5).
    Justesen, J., “A Class of Constructive Asymptotically Good Algebraic Codes,”IEEE Transactions on Information Theory 18, pp. 652–656, 1972.MATHCrossRefMathSciNetGoogle Scholar
  6. 6).
    Mayers, D., “Unconditionally Secure Quantum Bit Commitment is Impossible,”Physical Review Letters, 78, 17, pp. 3414–3417, 1997.CrossRefGoogle Scholar
  7. 7).
    Naor, M., Ostrovsky, R., Ventkatesan, R. and Young, M., “Perfect Zeroknowledge Arguments for NP Using Any One-way Permutation,”Journal of Cryptology, 11, 2, pp. 78–108, 1998.CrossRefGoogle Scholar
  8. 8).
    Okamoto, T., Tanaka, K. and Uchiyama, S., “Quantum Public-key Cryptosystems,” inAdvances in Cryptology—CRYPTO2000, pp. 147–165, 2000.Google Scholar
  9. 9).
    Schneier, B.,Applied Cryptography—2nd Ed., Wiley, 1996.Google Scholar
  10. 10).
    Watrous, J., “Succinct Quantum Proofs for Properties of Finite N Groups,” inProc. of 41st Annual Symposium on Foundations of Computer Science, pp. 12–14, November, pp. 537–546, 2000.Google Scholar

Copyright information

© Ohmsha, Ltd. and Springer 2003

Authors and Affiliations

  1. 1.Department of Mathematical and Computing SciencesTokyo Institute of TechnologyTokyoJapan

Personalised recommendations