Skip to main content
Log in

Status of physical observables of a friedmann universe in the classical and quantum hamiltonian formalisms

  • Published:
Astrophysics Aims and scope

Abstract

The paper is devoted to an investigation of the relationships between the classical Friedmann cosmology and the Dirac Hamiltonian approach to quantization of the universe, based on the simple but important example of a homogeneous universe filled with excitations of a scalar field. The method of gaugeless reduction is used to completely separate the sector of physical variables from the purely gauge sector, making it possible to find the relationship between cosmological observables in the Friedmann — Einstein sense and observables of the Dirac Hamiltonian formalism in the Narlikar conformai reference frame. Gaugeless reduction enabled us to establish that in the process of reduction, one of the variables of the nonphysical sector is converted into an invariant time parameter and cannot be treated as a dynamical variable in either the functional or the operator approach to quantization. It is shown that in this conversion of a variable into a time parameter, the Hartle-Hawking functional integral is the reason why the wave function of the Wheeler—De Witt (WDW) equation cannot be normalized and why an infinite gauge factor arises. The gaugeless reduction provides a certain recipe for mathematical and physical interpretation of the WDW equation and wave functions, the use of which makes their relationship to observational cosmology clear and transparent. It is shown, in particular, how the WDW wave function describes the Friedmann evolution with respect to proper time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  1. P. A. M. Dirac,Proc. R. Soc.,A246, 333 (1958);Phys. Rev.,114, 924 (1959).

    ADS  MathSciNet  Google Scholar 

  2. R. Arnowitt, S. Deser, and C. W. Misner,Phys. Rev. 117, 1595 (1960).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. J. A. Wheeler, in:Batelle Recontres: 1967 Lectures in Mathematics and Physics, C. De Witt and J. A. Wheeler (eds.), W. A. Benjamin, New York (1968).

    Google Scholar 

  4. B. S. De Witt,Phys. Rev.,160, 1113 (1967).

    Article  ADS  Google Scholar 

  5. L. D. Faddeev and V. N. Popov,Usp. Fiz. Nauk,111, 427 (1973).

    Google Scholar 

  6. M. P. Ryan, Jr., and L. C. Shapley,Homogeneous Relativistic Cosmologies, Princeton Series on Physics, Princeton Univ. Press., Princeton, N.J. (1975).

    Google Scholar 

  7. M. P. Ryan,Hamiltonian Cosmology, Lecture Notes in Physics, No. 13, Springer-Verlag, Berlin-Heidelberg-New York (1972).

    Google Scholar 

  8. S. A. Gogilidze, A. M. Khvedelidze, and V. N. Pervushin, “On admissible gauges for constrained systems,”JINRPreprint, E2-95-203 (1995);Preprint, ZU-TH-4/95, hep-th 9504154 (1995);Phys. Rev. D,53, 2160 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  9. S. A. Gogilidze, A. M. Khvedelidze, and V. N. Pervushin,“On Abelization of first class constraints,”JINRPreprint, E2-95-131, hep-th 9504153 (1995);J. Math. Phys.,37, 1760 (1996).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. A. A. Friedmann,Z. Phys.,10, 377 (1922).

    Article  ADS  Google Scholar 

  11. J. V. Narlikar, in:Astrofizica e Cosmologia, Gravitazione, Quanti e Relativita, G. Barbera, Florence (1979).

    Google Scholar 

  12. K. P. Stanyukovich and V. N. Mel’nikov,Hydrodynamics, Fields, and Constants in the Theory of Gravitation [in Russian], Énergoizdat, Moscow (1973), p. 105.

    Google Scholar 

  13. P. A. M. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School of Science, Yeshiva Univ., New York.

  14. V. Pervushin, V. Papoyan, S. Gogilidze, et al.,Phys. Lett.,B365, 35 (1996).

    ADS  MathSciNet  Google Scholar 

  15. V. Pervushin and T. Towmasjan,Int. J. Mod. Phys.,D4, No. 1, 105–113 (1995).

    ADS  MathSciNet  Google Scholar 

  16. A. M. Khvedelidze, V. V. Papoyan, and V. N. Pervushin,Phys. Rev. D,51, 5654 (1995).

    Article  ADS  Google Scholar 

  17. G. Lavrelashvili, V. A. Rubakow, and P. G. Tinyakov, in:Proceedings of the Fifth Seminar on Quantum Gravity,28 May–1 June 1990, M. A. Markov et al. (eds.), Moscow.

  18. J. B. Hartle and S. W. Hawking,Phys. Rev. D,28 (1983).

  19. S. A. Hayward,Phys. Rev. D,53, 5664 (1996).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Astrofizika, Vol. 40, No. 2, pp. 303–321, April–June, 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palii, Y.P., Papoyan, V.V. & Pervushin, V.N. Status of physical observables of a friedmann universe in the classical and quantum hamiltonian formalisms. Astrophysics 40, 198–210 (1997). https://doi.org/10.1007/BF03036114

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03036114

Keywords

Navigation