, Volume 41, Issue 3, pp 299–307 | Cite as

Conformally invariant model of the early universe

  • V. V. Papoyan
  • V. N. Pervushin
  • V. I. Smirichinskii


A model of the early universe in the Einstein theory of gravitation, supplemented by a conformalty invariant version of the Weinberg—Salam model, is considered. The conformai symmetry principle leads to the need to eliminate the Higgs potential from the expression for gravitational action, using the Lagrangian density of the model of Weinberg—Salam electroweak interactions as the material source, and to incorporate the conformally invariant Penrose—Chernikov—Tagirov term. In the limit of flat space, we arrive at the a version of the Weinberg—Salam model without Higgs particle-like excitations. In the conformalty invariant model under consideration, Higgs fields are absorbed by the spatial metric, so one can assume that the masses of elementary particles originate at the time when the evolution of the universe begins.


Scalar Field Canonical Transformation Higgs Potential Higgs Field Higgs Vacuum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Pervushin and T. Towmasjan,Int. J. Mod. Phys.,D4, 105 (1995); A. Khvedelidze, V. Papoyan, and V. Pervushin,Phys. Rev.,D51, 5654 (1995).ADSMathSciNetGoogle Scholar
  2. 2.
    V. Pervushin et al.,Phys. Lett.,B365, 35 (1996).ADSMathSciNetGoogle Scholar
  3. 3.
    A. Khvedelidze, Yu. Palii, V. Papoyan, and V. Pervushin,Phys. Lett.,B402, 263 (1997).ADSMathSciNetGoogle Scholar
  4. 4.
    S. Gogilidze, A. Khvedelidze, and V. Pervushin,Phys. Rev.,D53, 2160 (1996); S. A. Gogilidze, A. M. Khvedelidze, and V. N. Pervushin,J. Math. Phys.,37, 1760 (1996).ADSMathSciNetGoogle Scholar
  5. 5.
    R. Penrose, in:Relativity, Groups and Topology, Gordon and Breach, London (1964), p. 565; N. A. Chernikov and E. A. Tagirov,Ann. Inst. Henri Poincaré, 9, 109 (1968).Google Scholar
  6. 6.
    M. Pawlowski and R. Raczka,Found. Phys.,24, 1305 (1994).CrossRefADSGoogle Scholar
  7. 7.
    V. Pervushin and V. Smirichinski, “On the cosmological origin of the homogeneous scalar field in Unified Theories. “Preprint E2-97–155, Joint Inst. Nucl. Res., Dubna (1997), gr-qc/9704078 (submitted toPhys. Lett. B). Google Scholar
  8. 8.
    S. Dittmaier, C. Grosse-Kneter, and D. Schildnecht,Z. Phys.,C67, 109 (1995).ADSGoogle Scholar
  9. 9.
    T. Levi-Civita,Prace Mat.-Fiz.,17, 1(1906); S. Shanmugadhasan,J. Math. Phys.,14, 677 (1973).MATHGoogle Scholar
  10. 10.
    J. W. York, Jr.,Phys. Rev. Lett.,28, 1082 (1972); ibid.,26, 1656 (1971).CrossRefADSGoogle Scholar
  11. 11.
    S. Gogilidze et al.,Grav. Cosmol. 3, 156 (1997).Google Scholar
  12. 12.
    S. Weinberg,Rev. Mod. Phys.,61, 1 (1989).MATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    T. J. Broadhurst, R. S. Ellis, D. C. Koo, and A. S. Szalay,Nature (London),343, 726 (1990).CrossRefADSGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • V. V. Papoyan
    • 1
    • 2
  • V. N. Pervushin
    • 1
    • 2
  • V. I. Smirichinskii
    • 1
    • 2
  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.Erevan State UniversityArmenia

Personalised recommendations