Skip to main content
Log in

Conformally invariant model of the early universe

  • Published:
Astrophysics Aims and scope

Abstract

A model of the early universe in the Einstein theory of gravitation, supplemented by a conformalty invariant version of the Weinberg—Salam model, is considered. The conformai symmetry principle leads to the need to eliminate the Higgs potential from the expression for gravitational action, using the Lagrangian density of the model of Weinberg—Salam electroweak interactions as the material source, and to incorporate the conformally invariant Penrose—Chernikov—Tagirov term. In the limit of flat space, we arrive at the a version of the Weinberg—Salam model without Higgs particle-like excitations. In the conformalty invariant model under consideration, Higgs fields are absorbed by the spatial metric, so one can assume that the masses of elementary particles originate at the time when the evolution of the universe begins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Pervushin and T. Towmasjan,Int. J. Mod. Phys.,D4, 105 (1995); A. Khvedelidze, V. Papoyan, and V. Pervushin,Phys. Rev.,D51, 5654 (1995).

    ADS  MathSciNet  Google Scholar 

  2. V. Pervushin et al.,Phys. Lett.,B365, 35 (1996).

    ADS  MathSciNet  Google Scholar 

  3. A. Khvedelidze, Yu. Palii, V. Papoyan, and V. Pervushin,Phys. Lett.,B402, 263 (1997).

    ADS  MathSciNet  Google Scholar 

  4. S. Gogilidze, A. Khvedelidze, and V. Pervushin,Phys. Rev.,D53, 2160 (1996); S. A. Gogilidze, A. M. Khvedelidze, and V. N. Pervushin,J. Math. Phys.,37, 1760 (1996).

    ADS  MathSciNet  Google Scholar 

  5. R. Penrose, in:Relativity, Groups and Topology, Gordon and Breach, London (1964), p. 565; N. A. Chernikov and E. A. Tagirov,Ann. Inst. Henri Poincaré, 9, 109 (1968).

    Google Scholar 

  6. M. Pawlowski and R. Raczka,Found. Phys.,24, 1305 (1994).

    Article  ADS  Google Scholar 

  7. V. Pervushin and V. Smirichinski, “On the cosmological origin of the homogeneous scalar field in Unified Theories. “Preprint E2-97–155, Joint Inst. Nucl. Res., Dubna (1997), gr-qc/9704078 (submitted toPhys. Lett. B).

  8. S. Dittmaier, C. Grosse-Kneter, and D. Schildnecht,Z. Phys.,C67, 109 (1995).

    ADS  Google Scholar 

  9. T. Levi-Civita,Prace Mat.-Fiz.,17, 1(1906); S. Shanmugadhasan,J. Math. Phys.,14, 677 (1973).

    MATH  Google Scholar 

  10. J. W. York, Jr.,Phys. Rev. Lett.,28, 1082 (1972); ibid.,26, 1656 (1971).

    Article  ADS  Google Scholar 

  11. S. Gogilidze et al.,Grav. Cosmol. 3, 156 (1997).

    Google Scholar 

  12. S. Weinberg,Rev. Mod. Phys.,61, 1 (1989).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. T. J. Broadhurst, R. S. Ellis, D. C. Koo, and A. S. Szalay,Nature (London),343, 726 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Astrofizika, Vol. 41, No. 3, pp. 459–471, July–September, 1998.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papoyan, V.V., Pervushin, V.N. & Smirichinskii, V.I. Conformally invariant model of the early universe. Astrophysics 41, 299–307 (1998). https://doi.org/10.1007/BF03036099

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03036099

Keywords

Navigation