Il Nuovo Cimento A (1971-1996)

, Volume 112, Issue 9, pp 955–975 | Cite as

Decays of excited pseudoscalar and vector mesons in the chiralU(3) ×U(3) model



A chiralU(3) ×U(3) Lagrangian containing, besides the usual meson fields, their first radial excitations is considered. The Lagrangian is derived by bosonization of the Nambu-Jona-Lasinio (NJL) quark model with separable nonlocal interactions. The spontaneous breaking of chiral symmetry is governed by the NJL gap equation. The first radial excitations of the pion, ρ, ω, kaon, K* and ϕ are described with the help of form factors. The values for the decay widths for the processes π′ → ρπ, ρ′ → 2π, ρ′ → ωπ, ω′ → ρπ, K*′ → ρK, K*′ → K*π, K*′ → Kπ, K′ → K*K, K′ → K, K′ → Kρ, K′ → K*π and K′ → K2π are obtained in satisfactory agreement with the experimental data.

PACS 12.90

Miscellaneous theoretical ideas and models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Volkov M. K. andWeiss Ch., hep-ph/9608347;Phys. Rev. D,56 (1997) 221.Google Scholar
  2. [2]
    Volkov M. K.,Yad. Fiz.,60, No. 11 (1997) 2094.Google Scholar
  3. [3]
    Volkov M. K.,Ebert D. andNagy M., hep-ph/9705334;Int. J. Mod. Phys. A,13 (1998) 5443.Google Scholar
  4. [4]
    Ebert D. andVolkov M. K.,Yad. Fiz.,36 (1982) 1265;Z. Phys. C,16 (1983) 205;Volkov M. K,Ann. Phys. (N.Y.),157 (1984) 282.Google Scholar
  5. [5]
    Volkov M. K.,Sov. J. Part. Nucl.,17 (1986) 186.Google Scholar
  6. [6]
    Ebert D. andReinhardt H.,Nucl. Phys. B,271 (1986) 188.ADSCrossRefGoogle Scholar
  7. [7]
    Eguchi T.,Phys. Rev. D,14 (1976) 2755;Kikkawa K.,Prog. Theor. Phys.,56 (1976) 947.ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    Vogl H. andWeise W.,Prog. Part. Nucl. Phys.,27 (1991) 195.ADSCrossRefGoogle Scholar
  9. [9]
    Klevansky S. P.,Rev. Mod. Phys.,64 (1992) 649.ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    Feynman R. P., Kislinger M. andRandval F.,Phys. Rev. D,3 (1971) 2706.ADSCrossRefGoogle Scholar
  11. [11]
    Review of Particle Properties,Europ. Phys. J. C,3 (1998).Google Scholar
  12. [12]
    Gerasimov S. B. andGovorkov A. B.,Z. Phys. C,32 (1986) 405.ADSCrossRefGoogle Scholar
  13. [13]
    Clegg A. B. andDonnachie A.,Z. Phys. C,62 (1994) 455.ADSCrossRefGoogle Scholar
  14. [14]
    Gasiorovicz S. andGeffen D. A.,Rev. Mod. Phys.,41 (1969) 531.ADSCrossRefGoogle Scholar
  15. [15]
    Andrianov A. A. andAndrianov V. A.,Int. J. Mod. Phys. A,8 (1993) 1981;Nucl. Phys. B, Proc. Suppl.,39 B, C (1993) 257.ADSCrossRefGoogle Scholar
  16. [16]
    Burdanov V. Ja., Efimov G. V., Nedelko S. N. andSolunin S. A.,Phys. Rev. D,54 (1996) 4483.ADSCrossRefGoogle Scholar
  17. [17]
    Celenza L. S.,Huang Bo andShakin C. M., preprint BCCNT 97/071/271 and preprint BCCNT 97/091/266.Google Scholar
  18. [18]
    Blaschke D.,Burau G.,Volkov M. K. andYudichev V. L.,Yad. Fiz.,62, No. 11 (1999).Google Scholar

Copyright information

© Società Italiana di Fisica 1999

Authors and Affiliations

  1. 1.Bogoliubov Laboratory of Theoretical Physics Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.Institute of PhysicsSlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations