Skip to main content
Log in

The Dirac-Nambu-Gotop-branes as particular solutions to a generalized, unconstrained theory

  • Published:
Il Nuovo Cimento A (1971-1996)

Summary

The theory of the usual, constrainedp-branes is embedded into a larger theory in which there are no constraints. In the latter theory the Fock-Schwinger proper time formalism is extended from point-particles to membranes of arbitrary dimension. For this purpose the tensor calculus in the infinite-dimensional membrane space ℳ is developed and an action which is covariant under reparametrizations in ℳ is proposed. The canonical and Hamiltonian formalism is elaborated in detail. The quantization appears to be straightforward and elegant. No problem with unitarity arises. The conventionalp-brane states are particular stationary solutions to the functional Schrödinger equation which describes the evolution of a membrane’s state with respect to the invariant evolution parameterτ. A τ-dependent solution which corresponds to the wave packet of a nullp-brane is found. It is also shown that states of a lower-dimensional membrane can be considered as particular states of a higher-dimensional membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaku M.,Introduction to Superstrings (Springer-Verlag, New York) 1988); Hughes J., Liu J. and Polchinski J., Phys. Lett. B, 180 (1986) 370; Bergshoeff E., Sezgin E. and Townsend P. K., Phys. Lett. B, 189 (1987) 75; 209 (1988) 451; Bergshoeff E., Sezgin E. and Townsend P. K., Ann. Phys., 185 (1988) 330; Blencowe M. P. and Duff M. J., Nucl. Phys. B, 310 (1988) 387; Marquard U. and Scholl M., Phys. Lett. B, 209 (1988) 434; Karlhede A. and Lindström U., Phys. Lett. B, 209 (1988) 441; Duff M., Class. Quantum Grav., 6 (1989) 1577; Bytsenko A. A. and Zerbini S., Mod. Phys. Lett. A, 8 (1993) 1573; Bytsenko A. and Odintsov S., Fortschr. Phys., 41 (1993) 233.

    Book  MATH  Google Scholar 

  2. Pavšič M.,Phys. Lett. B,197 (1987) 327; 205 (1988) 231; Class. Quantum. Grav., 5 (1988) 247; Barut A. O. and Pavšič M., Lett. Math. Phys., 16 (1988) 333; Mod. Phys. Lett. A, 7 (1992) 1381; Phys. Lett. B, 306 (1993) 49; 331 (1994) 45.

    Article  ADS  MathSciNet  Google Scholar 

  3. Schild A.,Phys. Rev. D,16 (1977) 1722.

    Article  ADS  Google Scholar 

  4. Eguchi T.,Phys. Rev. Lett.,44 (1980) 126.

    Article  ADS  Google Scholar 

  5. Fock V.,Phys. Z. Sowjetunion,12 (1937) 404; Stueckelberg E. C. G., Helv. Phys. Acta, 14 (1941) 322; 14 (1941) 588; 15 (1942) 23; Schwinger J., Phys. Rev, 82 (1951) 664; Feynman R. P., Phys. Rev, 84 (1951) 108; Horwitz L. P. and Piron C., Helv. Phys. Acta, 46 (1973) 316; Collins E. R. and Fanchi J. R., Nuovo Cimento A, 48 (1978) 314; Horwitz L. P. and Piron C., Helv. Phys. Acta, 46 (1973) 316; Collins E. R. and Fanchi J. R., Nuovo Cimento A, 48 (1978) 314; Horwitz L. P., Found. Phys., 18 (1988) 1159; 22 (1992) 421; Enatsu H., Progr. Theor. Phys., 30 (1963) 236; Nuovo Cimento A, 95 (1986) 269; FANCHI J. R., Phys. Rev. D, 20 (1979) 3108; Kubo R., Nuovo Cimento A, 85 (1985) 293; Shnerb N. and Horwitz L. P., Phys. Rev. A, 48 (1993) 4068.

    Google Scholar 

  6. Pavšič M.,Found. Phys. 21 (1991) 1005; Nuovo Cimento A, 104 (1991) 1337; Doga, Turkish J. Phys., 17 (1993) 768.

    Article  ADS  MathSciNet  Google Scholar 

  7. Pavšič M.,Found. Phys.,25 (1995) 819.

    Article  ADS  MathSciNet  Google Scholar 

  8. Pavšič M.,Nuovo Cimento A,108 (1995) 221.

    Article  ADS  Google Scholar 

  9. PAVšič M.,Found. Phys.,26 (1996) 159.

    Article  ADS  MathSciNet  Google Scholar 

  10. Roshchupkin S. N. andZheltukhin A. A., On a possibility of membrane cosmology, preprint hep-th/9607119.

  11. Bardakci K.,Nucl. Phys. B,271 (1986) 561.

    Article  ADS  MathSciNet  Google Scholar 

  12. DeWitt B., Supermanifolds (Cambridge Univ. Press) 1984, p. 232.

  13. Fujikawa K.,Phys. Rev. Lett. 42 (1979) 1195; 44 (1980) 1733; Phys. Rev. D, 21 (1980) 2448; 23 (1981) 2262; Nucl. Phys. B, 226 (1983) 437; 245 (1984) 436; for a review see Basler M., Fortschr. Phys., 41 (1993) 1.

    Article  ADS  Google Scholar 

  14. Henneaux M.,Phys. Lett. B,120 (1983) 179; Marquard U. and Scholl M., Phys. Lett. B, 209 (1988) 434.

    Article  ADS  MathSciNet  Google Scholar 

  15. Hong J., Kim J. andSikivie P.,Phys. Rev. Lett.,69 (1992) 2611.

    Article  ADS  Google Scholar 

  16. Rund H.,The Hamilton-Jacobi Theory in the Calculus of Variation (Van Nostrand, London) 1966; Barut A. O., Electrodynamics and Classical Theory of Fields and Particles (Macmillan, New York) 1964.

    MATH  Google Scholar 

  17. Synge J. L., Relativity: the General Theory (North-Holland, Amsterdam) 1964.

  18. Dewitt B. S.,Rev. Mod. Phys.,29 (1957) 377; see also DeWitt B. S., Phys. Rev., 85 (1952) 53.

    Article  ADS  MathSciNet  Google Scholar 

  19. Pavšič M.,Class. Quantum Grav.,9 (1992) L13.

    Article  Google Scholar 

  20. Schwarz J.,Lett. Math. Phys.,34 (1995) 309; Harvey J. A. and Strominger A., Nucl. Phys. B, 449 (1995) 535; Sen A., Phys. Lett. B, 329 (1994) 217; Nucl. Phys. B, 450 (1995) 103.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pavšič.

Additional information

Work supported by the Slovenian Ministry of Science and Technology under Contract J1-7455-0106-96.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavšič, M. The Dirac-Nambu-Gotop-branes as particular solutions to a generalized, unconstrained theory. Il Nuovo Cimento A (1971-1996) 110, 369–396 (1997). https://doi.org/10.1007/BF03035888

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03035888

PACS 11.25

Navigation