Advertisement

Il Nuovo Cimento A (1971-1996)

, Volume 110, Issue 4, pp 369–396 | Cite as

The Dirac-Nambu-Gotop-branes as particular solutions to a generalized, unconstrained theory

  • M. Pavšič
Article

Summary

The theory of the usual, constrainedp-branes is embedded into a larger theory in which there are no constraints. In the latter theory the Fock-Schwinger proper time formalism is extended from point-particles to membranes of arbitrary dimension. For this purpose the tensor calculus in the infinite-dimensional membrane space ℳ is developed and an action which is covariant under reparametrizations in ℳ is proposed. The canonical and Hamiltonian formalism is elaborated in detail. The quantization appears to be straightforward and elegant. No problem with unitarity arises. The conventionalp-brane states are particular stationary solutions to the functional Schrödinger equation which describes the evolution of a membrane’s state with respect to the invariant evolution parameterτ. A τ-dependent solution which corresponds to the wave packet of a nullp-brane is found. It is also shown that states of a lower-dimensional membrane can be considered as particular states of a higher-dimensional membrane.

PACS 11.25

Theory of fundamental strings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kaku M.,Introduction to Superstrings (Springer-Verlag, New York) 1988); Hughes J., Liu J. and Polchinski J., Phys. Lett. B, 180 (1986) 370; Bergshoeff E., Sezgin E. and Townsend P. K., Phys. Lett. B, 189 (1987) 75; 209 (1988) 451; Bergshoeff E., Sezgin E. and Townsend P. K., Ann. Phys., 185 (1988) 330; Blencowe M. P. and Duff M. J., Nucl. Phys. B, 310 (1988) 387; Marquard U. and Scholl M., Phys. Lett. B, 209 (1988) 434; Karlhede A. and Lindström U., Phys. Lett. B, 209 (1988) 441; Duff M., Class. Quantum Grav., 6 (1989) 1577; Bytsenko A. A. and Zerbini S., Mod. Phys. Lett. A, 8 (1993) 1573; Bytsenko A. and Odintsov S., Fortschr. Phys., 41 (1993) 233.CrossRefMATHGoogle Scholar
  2. [2]
    Pavšič M.,Phys. Lett. B,197 (1987) 327; 205 (1988) 231; Class. Quantum. Grav., 5 (1988) 247; Barut A. O. and Pavšič M., Lett. Math. Phys., 16 (1988) 333; Mod. Phys. Lett. A, 7 (1992) 1381; Phys. Lett. B, 306 (1993) 49; 331 (1994) 45.CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    Schild A.,Phys. Rev. D,16 (1977) 1722.CrossRefADSGoogle Scholar
  4. [4]
    Eguchi T.,Phys. Rev. Lett.,44 (1980) 126.CrossRefADSGoogle Scholar
  5. [5]
    Fock V.,Phys. Z. Sowjetunion,12 (1937) 404; Stueckelberg E. C. G., Helv. Phys. Acta, 14 (1941) 322; 14 (1941) 588; 15 (1942) 23; Schwinger J., Phys. Rev, 82 (1951) 664; Feynman R. P., Phys. Rev, 84 (1951) 108; Horwitz L. P. and Piron C., Helv. Phys. Acta, 46 (1973) 316; Collins E. R. and Fanchi J. R., Nuovo Cimento A, 48 (1978) 314; Horwitz L. P. and Piron C., Helv. Phys. Acta, 46 (1973) 316; Collins E. R. and Fanchi J. R., Nuovo Cimento A, 48 (1978) 314; Horwitz L. P., Found. Phys., 18 (1988) 1159; 22 (1992) 421; Enatsu H., Progr. Theor. Phys., 30 (1963) 236; Nuovo Cimento A, 95 (1986) 269; FANCHI J. R., Phys. Rev. D, 20 (1979) 3108; Kubo R., Nuovo Cimento A, 85 (1985) 293; Shnerb N. and Horwitz L. P., Phys. Rev. A, 48 (1993) 4068.Google Scholar
  6. [6]
    Pavšič M.,Found. Phys. 21 (1991) 1005; Nuovo Cimento A, 104 (1991) 1337; Doga, Turkish J. Phys., 17 (1993) 768.CrossRefADSMathSciNetGoogle Scholar
  7. [7]
    Pavšič M.,Found. Phys.,25 (1995) 819.CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    Pavšič M.,Nuovo Cimento A,108 (1995) 221.CrossRefADSGoogle Scholar
  9. [9]
    PAVšič M.,Found. Phys.,26 (1996) 159.CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    Roshchupkin S. N. andZheltukhin A. A., On a possibility of membrane cosmology, preprint hep-th/9607119.Google Scholar
  11. [11]
    Bardakci K.,Nucl. Phys. B,271 (1986) 561.CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    DeWitt B., Supermanifolds (Cambridge Univ. Press) 1984, p. 232.Google Scholar
  13. [13]
    Fujikawa K.,Phys. Rev. Lett. 42 (1979) 1195; 44 (1980) 1733; Phys. Rev. D, 21 (1980) 2448; 23 (1981) 2262; Nucl. Phys. B, 226 (1983) 437; 245 (1984) 436; for a review see Basler M., Fortschr. Phys., 41 (1993) 1.CrossRefADSGoogle Scholar
  14. [14]
    Henneaux M.,Phys. Lett. B,120 (1983) 179; Marquard U. and Scholl M., Phys. Lett. B, 209 (1988) 434.CrossRefADSMathSciNetGoogle Scholar
  15. [15]
    Hong J., Kim J. andSikivie P.,Phys. Rev. Lett.,69 (1992) 2611.CrossRefADSGoogle Scholar
  16. [16]
    Rund H.,The Hamilton-Jacobi Theory in the Calculus of Variation (Van Nostrand, London) 1966; Barut A. O., Electrodynamics and Classical Theory of Fields and Particles (Macmillan, New York) 1964.MATHGoogle Scholar
  17. [17]
    Synge J. L., Relativity: the General Theory (North-Holland, Amsterdam) 1964.Google Scholar
  18. [18]
    Dewitt B. S.,Rev. Mod. Phys.,29 (1957) 377; see also DeWitt B. S., Phys. Rev., 85 (1952) 53.CrossRefADSMathSciNetGoogle Scholar
  19. [19]
    Pavšič M.,Class. Quantum Grav.,9 (1992) L13.CrossRefGoogle Scholar
  20. [20]
    Schwarz J.,Lett. Math. Phys.,34 (1995) 309; Harvey J. A. and Strominger A., Nucl. Phys. B, 449 (1995) 535; Sen A., Phys. Lett. B, 329 (1994) 217; Nucl. Phys. B, 450 (1995) 103.CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Società Italiana di Fisica 1997

Authors and Affiliations

  1. 1.Jožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations