Neurotoxicity Research

, Volume 9, Issue 2–3, pp 93–100 | Cite as

Characterization ofClostridial botulinum neurotoxin channels in neuroblastoma cells

  • Audrey Fischer
  • Mauricio Montal


The channel and chaperone activities ofClostridial botulinum neurotoxin (BoNT) A were investigated in Neuro 2a neuroblastoma cells under conditions that closely emulate those prevalent at the endosome. Channel activity occurs in bursts interspersed between periods of little or no activity. The channels are voltage dependent, opening only at negative voltages. Within bursts, the channel resides preferentially in the open state. The channels open to a main conductance of 105 ± 5 pS or 65 ± 4 pS in 200 mM CsCl or NaCl, respectively. The BoNT channels display a conspicuous subconductance of 10 ± 2 pS. The neuroblastoma cell line appears, therefore, to be a suitable system to characterize the BoNT channel and to pursue evaluation of plausible strategies for targeted drug delivery thereby minimizing the requirement forin vivo animal testing.


Botulinum neurotoxin Channels Chaperones Targeted drug screen Protein translocation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blaustein RO, WJ Germann, A Finkelstein and BR DasGupta (1987) The N-terminal half of the heavy chain of botulinum type A neurotoxin forms channels in planar phospholipid bilayers.FEBS Lett. 226, 115–120.PubMedCrossRefGoogle Scholar
  2. Carpaneto A, A Accardi, M Pisciotta and F Gambale (1999) Chloride channels activated by hypotonicity in N2A neuroblastoma cell line.Exp. Brain Res. 124, 193–199.PubMedCrossRefGoogle Scholar
  3. Dong M, DA Richards, MC Goodnough, WH Tepp, EA Johnson and ER Chapman (2003) Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells.J. Cell. Biol. 162, 1293–1303.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Donovan JJ and JL Middlebrook (1986) Ion-conducting channels produced by botulinum toxin in planar lipid membranes.Biochemistry 25, 2872–2876.PubMedCrossRefGoogle Scholar
  5. Finkelstein A, KJ Oh, L Senzel, M Gordon, RO Blaustein and RJ Collier (2000) The diphtheria toxin channel-forming T-domain translocates its own NH2-terminal region and the catalytic domain across planar phospholipid bilayers.Int. J. Med. Microbiol. 290, 435–440.PubMedCrossRefGoogle Scholar
  6. Gambale F and M Montal (1988) Characterization of the channel properties of tetanus toxin in planar lipid bilayers.Biophys. J. 53, 771–783.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Hamill OP, A Marty, E Neher, B Sakmann and FJ Sigworth (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches.Pflugers Arch. 391, 85–100.PubMedCrossRefGoogle Scholar
  8. Hille B (2001)Ion Channels of Excitable Cells, 3rd Edition (Sinauer: Sunderland, MA).Google Scholar
  9. Hoch DH, M Romero-Mira, BE Ehrlich, A Finkelstein, BR DasGupta and LL Simpson (1985) Channels formed by botulinum, tetanus, and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes.Proc. Natl. Acad. Sci. USA 82, 1692–1696.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Keller BU, RP Hartshorne, JA Talvenheimo, WA Catterall and M Montal (1986) Sodium channels in planar lipid bilayers. Channel gating kinetics of purified sodium channels modified by batrachotoxin.J. Gen. Physiol. 88, 1–23.PubMedCrossRefGoogle Scholar
  11. Koriazova LK and M Montal (2003) Translocation of botulinum neurotoxin light chain protease through the heavy chain channel.Nat. Struct. Biol. 10, 13–18.PubMedCrossRefGoogle Scholar
  12. Krantz BA, A Finkelstein and RJ Collier (2005a) Protein Translocation through the anthrax toxin transmembrane pore is driven by a proton gradient.J. Mol. Biol. 2005 Dec 1; [Epub ahead of print].Google Scholar
  13. Krantz BA, RA Melnyk, S Zhang, SJ Juris, DB Lacy, Z Wu, A Finkelstein and RJ Collier (2005b) A phenylalanine clamp catalyzes protein translocation through the anthrax toxin pore.Science 309, 777–781.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Lacy DB and RC Stevens (1999) Sequence homology and structural analysis of the clostridial neurotoxins.J. Mol. Biol. 291, 1091–1104.PubMedCrossRefGoogle Scholar
  15. Lacy DB, W Tepp, AC Cohen, BR DasGupta and RC Stevens (1998) Crystal structure of botulinum neurotoxin type A and implications for toxicity.Nat. Struct. Biol. 5, 898–902.PubMedCrossRefGoogle Scholar
  16. Lascola CD, DJ Nelson and RP Kraig (1998) Cytoskeletal actin gates a Cl channel in neocortical astrocytes.J. Neurosci. 18, 1679–1692.PubMedCentralPubMedGoogle Scholar
  17. Nishiki T, Y Tokuyama, Y Kamata, Y Nemoto, A Yoshida, M Sekiguchi, M Takahashi and S Kozaki (1996) Binding of botulinum type B neurotoxin to Chinese hamster ovary cells transfected with rat synaptotagmin II cDNA.Neurosci. Lett. 208, 105–108.PubMedCrossRefGoogle Scholar
  18. Oh KJ, L Senzel, RJ Collier and A Finkelstein (1999) Translocation of the catalytic domain of diphtheria toxin across planar phospholipid bilayers by its own T domain.Proc. Natl. Acad. Sci. USA 96, 8467–8470.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Rauch G, F Gambale and M Montal (1990) Tetanus toxin channel in phosphatidylserine planar bilayers: conductance states and pH dependence.Eur. Biophys. J. 18, 79–83.PubMedGoogle Scholar
  20. Ren J, K Kachel, H Kim, SE Malenbaum, RJ Collier and E London (1999) Interaction of diphtheria toxin T domain with molten globule-like proteins and its implications for translocation.Science 284, 955–957.PubMedCrossRefGoogle Scholar
  21. Rummel A, T Karnath, T Henke, H Bigalke and T Binz (2004) Synaptotagmins I and II act as nerve cell receptors for botulinum neurotoxin G.J. Biol. Chem. 279, 30865–30870.PubMedCrossRefGoogle Scholar
  22. Schiavo G, M Matteoli and C Montecucco (2000) Neurotoxins affecting neuroexocytosis.Physiol. Rev. 80, 717–766.PubMedGoogle Scholar
  23. Senzel L, M Gordon, RO Blaustein, KJ Oh, RJ Collier and A Finkelstein (2000) Topography of diphtheria toxin’s T domain in the open channel state.J. Gen. Physiol. 115, 421–434.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Sheridan RE (1998) Gating and permeability of ion channels produced by botulinum toxin types A and E in PC12 cell membranes.Toxicon. 36, 703–717.PubMedCrossRefGoogle Scholar
  25. Swaminathan S and S Eswaramoorthy (2000) Structural analysis of the catalytic and binding sites of clostridium botulinum neurotoxin B.Nat. Struct. Biol. 7, 693–699.PubMedCrossRefGoogle Scholar
  26. Wickner W and R Schekman (2005) Protein translocation across biological membranes.Science 310, 1452–1456.PubMedCrossRefGoogle Scholar
  27. Yowler BC, RD Kensinger and CL Schengrund (2002) Botulinum neurotoxin A activity is dependent upon the presence of specific gangliosides in neuroblastoma cells expressing synaptotagmin I.J. Biol. Chem. 277, 32815–32819.PubMedCrossRefGoogle Scholar
  28. Zhang S, E Udho, Z Wu, RJ Collier and A Finkelstein (2004) Protein translocation through anthrax toxin channels formed in planar lipid bilayers.Biophys. J. 87, 3842–3849.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Section of Neurobiology, Division of Biological SciencesUniversity of California San DiegoLa JollaUSA

Personalised recommendations