Advertisement

Neurotoxicity Research

, Volume 12, Issue 1, pp 71–79 | Cite as

Acute and subacute exposure to malathion impairs aversive but not non-associative memory in rats

  • Samira S. Valvassori
  • Jucélia J. Fortunato
  • Karin M. Gomes
  • Gislaine Z. Réus
  • Márcio R. Martins
  • Elaine C. Gavioli
  • Maria Rosa C. Schetinger
  • Felipe Dal-Pizzol
  • João Quevedo
Article

Abstract

Malathion [S-(1,2-dicarbethoxy) ethyl-0,0-dimethyl-phosphorodithioate] is an organophosphorus compoun that is widely used as pesticide especially in developing countries. This pesticide affects the central nervous system by inhibiting acetylcholinesterase, leading to an increase of acetylcholine in the synaptic cleft, and subsequent activation of cholinergic muscarinic and nicotinic receptors. In humans, intoxication with organophosphates causes a wide range of neurological symptoms, including memory deficits. The present study was aimed to investigate the effects of the acute (1 h prior the test) and subacute (once a day for 28 days) exposure to malathion at doses of 25, 50, 100 and 150 mg/kg in rats tested in the step-down inhibitory avoidance task, open-field habituation and elevated plus-maze tests. Interestingly, the acute and subacute treatment with malathion impaired aversive-memory in the step-down inhibitory avoidance task, but did not alter the animal performance in the elevated plus-maze and in the habituation to the open-field tests, and neither modified spontaneous locomotion. The activity of acetylcholinesterase enzyme was significantly reduced after subacute, but not acute, treatment with malathion (25, 100 and 150 mg/kg). Our results suggest that malathion impairs aversive-memory retention but not non-associative memory, without affecting anxiety-related behaviors. These findings support the view that the inhibition of acetylcholinesterase enzyme is not correlated with cognitive deficits observed in acute and subacute malathion-treated rats.

Keywords

Malathion Memory Anxiety Open-field habituation Elevated plus-maze test Inhibitory-avoidance task Acetylcholinesterase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Rahman A, AM Dechkovskaia, LB Goldstein, SH Bullman, W Khan, EM El-Masry and MB Abou-Donia (2004) Neurological deficits induced by malathion, DEET, and permethrin, alone or in combination in adult rats.J. Toxicol. Environ. Health A 67(4), 331–356.PubMedCrossRefGoogle Scholar
  2. Ahmed RS, V Seth, ST Pasha and BD Banerjje (2000) Influence of dietary ginger (Zingiber officinalles Rosc) on oxidative stress induced by malathion in rats.Food Chem. Toxicol. 38, 443–450.PubMedCrossRefGoogle Scholar
  3. Banerjje BD, V Seth, A Bhattacharya, ST Pash and AK Chakraborty (1999) Biochemical effects of some pesticides on lipid peroxidation and free-radical scanvengers.Toxicol. Lett. 107, 33–47.CrossRefGoogle Scholar
  4. Brioni JD and SP Arneric (1993) Nicotinic receptor agaonists facilitate retention of avoidance training: participation of dopaminergic mechanisms.Behav. Neural Biol. 59(1), 57–62.PubMedCrossRefGoogle Scholar
  5. Brocardo PS, P Pandolfo, RN Takahashi, AL Rodrigues and AL Dafre (2005) Antioxidant defenses and lipid peroxidation in the cerebral cortex and hippocampus following acute exposure to malathion and/or zinc chloride.Toxicology 207(2), 283–291.PubMedCrossRefGoogle Scholar
  6. Brocardo PS, F Assini, JL Franco, P Pandolfo, YM Muller, RN Takahashi, AL Dafre and AL Rodrigues (2007) Zinc attenuates malathion-induced depressant-like behavior, and confers neuroprotection in the rat brain.Toxicol. Sci. (in press).Google Scholar
  7. Delgado EH, EL Estreck, J Quevedo and F Dal-Pizzol (2006) Mitochondrial respiratory dysfunction and oxidative stress after chronic malathion exposure.Neurochem. Res. 31(8), 1021–1025.PubMedCrossRefGoogle Scholar
  8. Ellman GL, KD Courney, V Andres Jr and RM Featherstone (1961) A new and rapid colorimetric determination of acetylcholinesterase activity.Biochem. Pharmacol. 7, 88–95.PubMedCrossRefGoogle Scholar
  9. Ferreira AR, L Furstenau, C Blanco, E Kornisiuk, G Sanchez, D Daroit, M Castro e Silva, C Cervenansky, D Jerusalinsky and JA Quillfeldt (2003) Role of hippocampal M1 and M4 muscarinic receptor subtypes in memory consolidation in the rat.Pharmacol. Biochem. Behav. 74(2), 411–415.PubMedCrossRefGoogle Scholar
  10. Fornari RV, KM Moreira and MG Oliveira (2000) Effects of the selective M1 muscarinic receptor antagonist dicyclomine on emotional memory.Learn. Mem. 7(5), 287–292.PubMedCrossRefGoogle Scholar
  11. Fortunato JJ, G Feier, AM Vitali, FC Petronilho, F Dal-Pizzol and J Quevedo (2006a) Malathion-induced oxidative stress in rat brain regions.Neurochem. Res. 31, 671–678.PubMedCrossRefGoogle Scholar
  12. Fortunato JJ, FR Agostinho, GZ Réus, FC Petronilho, F Dal-Pizzol and J Quevedo (2006b) Lipid peroxidative damage on malathion exposure in rats.Neurotox. Res. 9(1), 23–28.PubMedCrossRefGoogle Scholar
  13. Garder R, R Ray, J Frankenhein, K Wallace, M Loss and R Robichaud (1984) A possible mechanism for diisopropyl-fluorophosphate-induced memory loss in rats.Pharmacol. Biochem. Behav. 21, 43–46.CrossRefGoogle Scholar
  14. Hazarika A, SN Sarkaz, S Hajare, M Kataria and JK Malik (2003) Influence of malathion pretreatment on the toxicity of anilofos in male rats: a biochemical interaction study.Toxicology 185, 1–8.PubMedCrossRefGoogle Scholar
  15. Haque N, SJ Rizvi and MB Khan (1987) Malathion induced alterations in the lipid profile and the rate of lipid peroxidation in rat brain and spinal cord.Pharmacol. Toxicol. 61(1), 12–15.PubMedGoogle Scholar
  16. He F, S Chen, X Tang, W Gan, B Tao and B Wen (2002) Biological monitoring of combined exposure to organophosphorus and pyrethroids.Toxocol. Lett. 134, 119–124.CrossRefGoogle Scholar
  17. Izquierdo I, C da Cunha, R Rosat, MBC Ferreira, D Jerusalinski and JH Medina (1992) Neurotransmitter receptors involved in memory processing by the amygdala, medial septum and hippocampus of rats.Behav. Neural Biol. 58, 16–25.PubMedCrossRefGoogle Scholar
  18. Izquerdo I, LR Bevilaqua, JI Rossato, JS Bonini, WC Da Silva, JH Medina and M Cammarota (2006) The connection between the hippocampal and the striatal memory systems of the brain: a review of recent findings.Neurotox. Res. 10(2), 113–121.Google Scholar
  19. Jagdev N and ES Barar (1982) Effect of physostigmine and atropine on the single-trial passive avoidance response in rats.Indian J. Physiol. Pharmacol. 26(3), 201–206.PubMedGoogle Scholar
  20. Jerusalinsky D, C Cervenansky, R Walz, M Bianchin and I Izquierdo (1993) A peptide muscarinic toxin from the Green Mamba venom shows agonist-like action in an inhibitory avoidance learning task.Eur. J. Pharmacol. 240(1), 103–105.PubMedCrossRefGoogle Scholar
  21. Kaplan JH, J Kesseler, N Rosenberg, D Pack and H Schaumberg (1993) Sensory neuropathy associated with dursban (chlorpyrifos) exposure.Neurology 43, 2193–2196.PubMedGoogle Scholar
  22. Milatovic D, RC Gupta and M Aschner (2006) Anticholinesterase toxicity and oxidative stress.Scientific World J. 6, 295–310.Google Scholar
  23. Pellow S, P Chopen, SE File and M Briley (1985) Validation of plus-maze as a measure of anxiety in the rat.J. Neurosci. Meth. 14, 149–167.CrossRefGoogle Scholar
  24. Quevedo J, MRM Vianna, R Roesler, F De-Paris, I Izquierdo and SPR Rose (1999) Two time windows of anisom vcin-induced amnesia for inhibitory avoidance training in rats: protection from amnesia by pretraining but not preexposure to the task apparatus.Learn. Mem. 6, 600–607.PubMedCrossRefGoogle Scholar
  25. Ramos ZR, JJ Fortunato, FR Agostinho, MR Martins, M Correa, MR Schetinger, F Dal-Pizzol and J Quevedo (2006) Influence of malathion on acetylcholinesterase activity in rats submitted to a forced swimming test.Neurotox. Res. 9 (4), 285–290.PubMedGoogle Scholar
  26. Rocha JBD, T Emanuelli and ME Pereira (1993) Effects of early undernutrition on kinetic parameters of brain acetylcholinesterase from adults rats.Acta Neurobiol. Exp. (Wars.) 53, 431–437.Google Scholar
  27. Roldan, G. E Bolanos-Badillo, H Gonzalez-Sanchez, GL Quirarte and RA Prado-Alcala (1997) Selective M1 muscarinic receptor antagonists disrupt memory consolidation of inhibitory avoidance in rats.Neurosci. Lett. 230(2), 93–96.PubMedCrossRefGoogle Scholar
  28. Roldan-Tapia L, FA Nieto-Escamez, EM del Aguila, F Laynez, T Parron and F Sanchez-Santed (2006) Neuropsychological sequelae from acute poisoning and long-term exposure to carbamate and organophosphate pesticides.Neurotoxicol. Teratol. 28(6), 694–703.PubMedCrossRefGoogle Scholar
  29. Sansone M, C Castellano, S Palazzesi, M Battaglia and M Ammassari-Teule (1993) Effects of oxiracetam, physostigmine, and their combination on active and passive avoidance learning in mice.Pharmacol. Biochem. Behav. 44(2), 451–455.PubMedCrossRefGoogle Scholar
  30. Santos HR, WM Cintra, Y Aracava, CM Maciel, NG Castro and EX Albuquerque (2004) Spine density and dentritic branching pattern of hippocampal CA1 pyramidal neurons in neonatal rats chronically exposed to the organophosphate paraoxon.Neurotoxicology 25, 481–494.PubMedCrossRefGoogle Scholar
  31. Savolainen K (2001) Understanding the toxic actions of organophospates, In:Handbook of Pesticide Toxicology (Kreiger RI, Ed.) (Academic Press: New York), pp. 1013–1041.Google Scholar
  32. Shaikh J, S Karanth, D Chakraborty, S Pruett and CN Pope (2003) Effects of daily stress or repeated paraoxon exposures on subacute pyridostigmine toxicity in rats.Arch. Toxicol. 77(10), 576–583.PubMedCrossRefGoogle Scholar
  33. Stephens R, A Spurgeon, IA Calvert, JR Beach, LS Levry and H Berry (1995) Neurological effects of long term exposure to organophosphorus in sheep dip.Lancet 345, 1135–1139.PubMedCrossRefGoogle Scholar
  34. Thiel CM, JP Huston and RJK Schwarting (1998) Hippocampal acetylcholine and habituation learning.Neuroscience 85, 1253–1262.PubMedCrossRefGoogle Scholar
  35. Thiel CM, CP Müller, JP Huston and RJK Schwarting (1999) High versus low reactivity to a novel environment: behavioral pharmacology and neurochemical assessments.Neuroscience 93, 243–251.PubMedCrossRefGoogle Scholar
  36. Tilson HA, B Veronesi, RL McLamb and HB Matthews (1990) Acute exposure to tris(2-chloroethyl)phosphate produces hippocampal neuronal loss and impairs learning in rats.Toxicol. Appl. Pharmacol. 106(2), 254–269.PubMedCrossRefGoogle Scholar
  37. Upchurch M and JM Wehner (1987) Efects of chronic diisopropylfluorophosphate treatment on spatial learning in mice.Pharmacol. Biochem. Behav. 27, 143–151.PubMedCrossRefGoogle Scholar
  38. Uppal RP, BD Garg and A Ahmend (1983a) Eeffect of malathion and DDT on the action of some tranquilizers on learning and memory traces in rats.Indian J. Exp. Biol. 21, 617–619.PubMedGoogle Scholar
  39. Uppal RP, BD Garg and A Ahmed (1983) Effect of malathion and DDT on action of chorpromzine and diazepan with reference to conditioned avoidance response in rats.Indian J. Exp. Biol. 21, 254–257.PubMedGoogle Scholar
  40. Vianna MR, M Alonso, H Violo, J Quevedo, F De Paris, M Furman, ML De Stein, JA Medina and I Izquierdo (2000) Role of hippocampal signaling pathways in long-term memory formation of a nonassociative learning task in the rat.Learn. Mem. 7, 333–340.PubMedCrossRefGoogle Scholar
  41. WHO UNEP (1999) Public health impact of pesticides used in agriculture. WHO, Geneva.Google Scholar
  42. Yokoyama K, S Araki, K Murata, M Nishikitoni, T Akumura and S Ishumatsu (1998) Chronic neurobehavioral effects of Tokyo subway sarin poisoning in relation to posttraumatic stress disorders.Arch. Environ. Health 53(4), 249–256.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Samira S. Valvassori
    • 1
  • Jucélia J. Fortunato
    • 1
  • Karin M. Gomes
    • 1
  • Gislaine Z. Réus
    • 1
  • Márcio R. Martins
    • 1
  • Elaine C. Gavioli
    • 1
  • Maria Rosa C. Schetinger
    • 3
  • Felipe Dal-Pizzol
    • 2
  • João Quevedo
    • 1
  1. 1.Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da SaúdeUniversidade do Extremo Sul CatrinenseCriciúmaBrazil
  2. 2.Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da SaúdeUniversidade do Extremo Sul CatarinenseCriciúmaBrazil
  3. 3.Departamento de Quimica, Centro de Ciências Naturais e ExatasUniversidade Federal de Santa MariaSanta MariaBrazil

Personalised recommendations