Cell Biophysics

, Volume 22, Issue 1–3, pp 61–77 | Cite as

A recombinant single-chain antibody interleukin-2 fusion protein

  • Philip Savage
  • Alex So
  • Robert A. Spooner
  • Agamemnon A. Epenetos


Recombinant interleukin-2 (rIL-2) therapy has been shown to be of value in the treatment of some cases of melanoma and renal cell carcinoma. However, its use can be limited by severe systemic toxicity. Targeting rIL-2 to the tumor should improve the antitumor immune response and decrease the systemic toxicity. With this aim, we have employed recombinant DNA techniques to construct a single-chain antibody interleukin-2 fusion protein (SCA-IL-2).

The protein used in this model system consists of the variable domains of the antilysozyme antibody D1.3 fused to human IL-2 and is expressed inE. coli. It retains antigen-binding specificity and has the full biological activity of rIL-2.

This approach can be taken to generate SCA-IL-2 proteins that bind to appropriate cellular antigens. In vivo administration of tumor-binding SCA-IL-2 should result in a localized high concentration of rIL-2 in the tumor tissues, maximizing the antitumor response while keeping systemic side effects to a minimum.

Index Entries

Bacterial expression single chain antibody fusion protein interleukin-2 



recombinant interleukin-2


single-chain antibody


single-chain antibody interleukin-2 fusion protein


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gillis, S., Ferm, M. M., Ou, W., and Smith, K. A. (1978) T cell growth factor: parameters of production and a quantitative microassay for activity.J. Immunol. 120, 2027–2032.PubMedGoogle Scholar
  2. 2.
    Rosenberg, S. A., Lotze, M. T., Yang, J. C., Aebersold, P. M., Linehan, W. M., Seipp, C. A., and White, D. E. (1989) Experience with the use of high dose interleukin-2 in the treatment of 652 cancer patients.Ann. Surg. 210, 474–485.PubMedCrossRefGoogle Scholar
  3. 3.
    Fearon, E. R., Pardoll, D. M., Itaya, T., Golumbek, P., Levitsky, H. I., Simons, J. W., Karasuyama, H., Vogelstein, B., and Frost, P. (1990) Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response.Cell 60, 397–403.PubMedCrossRefGoogle Scholar
  4. 4.
    Williams, D. P., Parker, K., Bacha, P., Bishai, W., Borowski, M., Gebauffe, F., Strom, T. B., and Murphy, J. R. (1987) Diptheria toxin receptor binding domain substitution with interleukin-2: genetic construction and properties of a diptheria toxin-related interleukin-2 fusion protein.Prot. Engin. 1, 493–498.CrossRefGoogle Scholar
  5. 5.
    Kiyokawa, T., Williams, D. P., Snider, C. E., Strom, T. B., and Murphy J. R. (1991) Protein engineering of diptheria-toxin-related interleukin-2 fusion toxins to increase cytotoxic potency for high affinity IL-2-receptor bearing target cells.Prot. Engin. 4, 463–468.CrossRefGoogle Scholar
  6. 6.
    Lorderboum-Galski, H., Fitzgerald, D., Chaudary, V., Aldhaya, S., and Pastan, I. (1988) Cytotoxic activity of an interleukin-2-Pseudomonas exotoxin chimeric protein produced inEscherichia coli.Proc. Natl. Acad. Sci. USA 85, 1922–1926.CrossRefGoogle Scholar
  7. 7.
    Landolf, N. F. (1991) A chimeric IL-2/Ig molecule possesses the functional activity of both proteins.J. Immunol. 146, 915–919.Google Scholar
  8. 8.
    Fell, H. P., Gayle, M. A., Grosmaire, L., and Ledbetter, J. A. (1991) Genetic construction and characterization of a fusion protein consisting of a chimeric F(ab’) with specificity for carcinomas and human IL-2.J. Immunol. 146, 2446–2452.PubMedGoogle Scholar
  9. 9.
    Houston, J. S., Levinson D., Mudgett-Hunter, M., Tai, M.-S., Novotny, J., Margolies, M. N., Ridge, R. J., Bruccoleri, R. E., Haber, E., Crea, R., and Opperman, H. (1988) Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv anlogue produced inEscherichia coli.Proc. Natl. Acad. Sci. USA 85, 5879–5883.CrossRefGoogle Scholar
  10. 10.
    Colcher, D., Bird, R., Roselli, M., Hardman, K. D., Johnson, S., Pope, S., Dodd, S., Pantoliano, M. W., Milenic, D. E., and Schlom, J. (1990) In vivo tumor targeting of a recombinant single-chain antigen-binding protein.JNCI 82, 1191–1197.PubMedCrossRefGoogle Scholar
  11. 11.
    Clackson, T., Hoogenboom, H. R., Griffiths, A. D., and Winter, G. (1991) Making antibody fragments using phage display libraries.Nature 352, 624–628.PubMedCrossRefGoogle Scholar
  12. 12.
    Marks, J. D., Hoogenboom, H. R., Bonnert, T. P., McCafferty, J., Griffith, D., and Winter, G. (1991) By-passing immunization. Human antibodies from V-gene libraries displayed on phage.J. Mol. Biol. 222, 581–597.PubMedCrossRefGoogle Scholar
  13. 13.
    McCafferty, J., Griffiths, A. D., Winter, G., and Chiswell, D. J. (1990) Phage antibodies: filamentous phage displaying antibody variable domains.Nature 348, 552–554.PubMedCrossRefGoogle Scholar
  14. 14.
    Stauch, K. L., Johnson, K., and Beckwith, J. (1989) Characterization of degP; a gene required for proteolysis in the cell envelope and essential for growth ofEscherichia coli at high temperature,J. Bact. 171, 2689–2696.Google Scholar
  15. 15.
    Ward, E. S., Gussow, D., Griffiths, A. D., Jones, P. T., and Winter, G. (1989) Binding activities of a repertoire of single immunoglobulin variable domains secreted fromEscherichia coli.Nature 341, 544–546.PubMedCrossRefGoogle Scholar
  16. 16.
    Smith, K. A., Favata, M. F., and Oroszlan, S. (1983) Production and characterization of monoclonal antibodies to human interleukin 2: strategy and tactics.J. Immunol. 131, 1808–1815.PubMedGoogle Scholar
  17. 17.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227, 680–685.PubMedCrossRefGoogle Scholar
  18. 18.
    Towbin, H., Staehelin, T., and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets; procedure and some applications.Proc. Natl. Acad. Sci. USA 76, 4350–4354.PubMedCrossRefGoogle Scholar
  19. 19.
    Gillis, S. and Smith, K. A. (1977) Long term culture of tumour-specific cytotoxic T cells.Nature 268, 154–156.PubMedCrossRefGoogle Scholar
  20. 20.
    Lei, S. P., Lin, H. C., Wang S. S., Callaway, J., and Wilcox, G. (1987) Characterization of the Erwinia carotova pelB gene and its product pectate lyase.J. Bact. 169, 4379–4383.PubMedGoogle Scholar
  21. 21.
    Savage, P. M., Beynon, H. C., Hartourian, R., Walport, M. J., and Epenetos, A. A. (1992) A single chain antibody interleukin-2 fusion protein mimics the effects of rIL-2 on endothelial cell permeability, inCell Adhesion Molecules in Cancer and Inflammation (Epenetos, A. A., ed.), Chapman and Hall, London.Google Scholar
  22. 22.
    Lotze, M. T., Chang, A. G., Seipp, C. A., Simpson, C., Vetto, J. T., and Rosenberg, S. A. (1986) High dose recombinant interleukin-2 in the treatment of patients with disseminated cancer.JAMA 256, 3117–3124.PubMedCrossRefGoogle Scholar
  23. 23.
    LeBerthon, B., Khawli, L. A., Alauddin, M., Miller, G. K., Charak, B. S., Mazumder, A., and Epstein, A. L. (1991) Enhanced tumor uptake of macromolecules induced by a novel vasoactive interleukin-2 immunoconjugate.Cancer Res. 51, 2694–2698.PubMedGoogle Scholar
  24. 24.
    Hennigan, T. W., Begent, R. H. J., and Allen-Mersh, T. G. (1991) Histamine, leukotriene C4 and interleukin-2 increase antibody uptake into a human carcinoma xenograft model.Br. J. Cancer 64, 872–874.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1993

Authors and Affiliations

  • Philip Savage
    • 1
    • 2
  • Alex So
    • 2
  • Robert A. Spooner
    • 1
  • Agamemnon A. Epenetos
    • 1
  1. 1.ICRF Monoclonal Targeting Group, Department of Clinical Oncology, Royal Postgraduate Medical SchoolHammersmith HospitalLondon
  2. 2.Department of Rheumatology, Royal Postgraduate Medical SchoolHammersmith HospitalLondon

Personalised recommendations