Advertisement

Pathology Oncology Research

, Volume 9, Issue 1, pp 13–19 | Cite as

Gastrointestinal stromal tumors (GIST): C-kit mutations, CD117 expression, differential diagnosis and targeted cancer therapy with imatinib

  • Mv Chandu de Silva
  • Robin Reid
Article

Abstract

Gastrointestinal stromal tumors (GISTs) have been recognised as a biologically distinctive tumor type, different from smooth muscle and neural tumors of the gastrointestinal tract. They constitute the majority of gastrointestinal mesenchymal tumors. They are defined and diagnosed by the expression of a protooncogene protein called CD117 detected by immunohistochemistry. It is now believed that GISTs originate from gastrointestinal pacemaker cells known as interstitial cells of Cajal, that control gut motility or from a precursor of these cells. The identification of mutations mostly in exon 11 and to a lesser extent in exons 9 and 13 of the c-kit protooncogene coding for c-kit (CD117) in many GISTs, has resulted in a better understanding of their oncogenic mechanisms. The finding of remarkable antitumor effects of the molecular inhibitor, imatinib (Glivec™) in metastatic and inoperable GISTs, has necessitated accurate diagnosis of GISTs and their distinction from other gastrointestinal mesenchymal tumors. To achieve this, pathologists need to be familiar with the spectrum of histological appearances shown by GISTs and have a high index of suspicion for these tumors. This review summarises recent advances in knowledge regarding the histogenesis, pathology, molecular biology, genetics and differential diagnosis of GISTs and the basis for the novel targeted cancer therapy with imatinib.

Keywords

Gastrointestinal stromal tumors c-kit CD117 imatinib 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersson J, Sjogren H, Meis-Kindblom JM, et al: The complexity of KIT gene mutations and chromosome rearrangements and their clinical correlation in gastrointestinal stromal (pacemaker cell) tumors. Am J Pathol 160: 15–22, 2002.PubMedGoogle Scholar
  2. 2.
    Appleman HD: Smooth muscle tumors of the gastrointestinal tract: what we now know that Stout didn’t know. Am J Surg Pathol 10 (Suppl 1): 83–99, 1986.Google Scholar
  3. 3.
    Beghini A, Tibiletti MG, Roversi G, et al: Germline mutation in the juxtamembrane domain of the kit gene in a family with gastrointestinal stromal tumors and urticaria pigmentosa. Cancer 92:657–662, 2001.PubMedCrossRefGoogle Scholar
  4. 4.
    Cooper PN, Quirke P, Hardy GJ, Dixon MF: A flow cytometric, clinical and histologic study of stromal neoplasms of the gastrointestinal tract. Am J Surg Pathol 16: 163–170, 1992.PubMedGoogle Scholar
  5. 5.
    Corless CL, McGreeney L, Haley A, et al: KIT mutations are common in incidental gastrointestinal stromal tumors one centimeter or less in size. Am J Pathol 160:1567–1572, 2002.PubMedGoogle Scholar
  6. 6.
    Cunningham RE, Federspiel BH, McCarthy WF, et al: Predicting prognosis of gastrointestinal smooth muscle tumors. Role of clinical and histologic evaluation, flow cytometry, and image cytometry. Am J Surg Pathol 17: 588–594, 1993.PubMedCrossRefGoogle Scholar
  7. 7.
    Dematteo RP, Heinrich MC, El-Rifai WM, Demetri G: Clinical management of gastrointestinal stromal tumors: before and after STI-571. Human Pathol 33: 466–477, 2002.CrossRefGoogle Scholar
  8. 8.
    El-Rifai W, Sarlomo-Rikala M, Miettinen M, et al: DNA copy number losses in chromosome 14: an early change in gastrointestinal stromal tumors. Cancer Res 56: 3230–3233, 1996.PubMedGoogle Scholar
  9. 9.
    Emory TS, Sobin LH, Lukes L, et al: Prognosis of gastrointestinal smooth muscle (stromal) tumors: dependence on anatomic site. Am J Surg Pathol 23: 82–87, 1999.PubMedCrossRefGoogle Scholar
  10. 10.
    Fletcher CDM, Berman JJ, Corless C, et al: Diagnosis of gastrointestinal stromal tumors: a consensus approach. Hum Pathol 33: 459–465, 2002.PubMedCrossRefGoogle Scholar
  11. 11.
    Franquemont DW: Differentiation and risk assessment of gastrointestinal stromal tumors. Am J Clin Pathol 103: 41–47, 1995.PubMedGoogle Scholar
  12. 12.
    Hasegawa T, Matsuno Y, Shimoda T, Hirohashi S: Gastrointestinal stromal tumor: Consistent CD117 immunostaining for diagnosis and prognostic classification based on tumor size and MIB-1 grade. Hum Pathol 33: 669–676, 2002.PubMedCrossRefGoogle Scholar
  13. 13.
    Heinrich MC, Blanke CD, Druker BJ, Corless CL: Inhibition of KIT tyrosine kinase activity: a novel molecular approach to the treatment of KIT-positive malignancies. J Clin Oncol 20: 1692–1703, 2002.PubMedCrossRefGoogle Scholar
  14. 14.
    Heinrich MC, Rubin BP, Longley BJ, Fletcher JA: Biology and genetic aspects of gastrointestinal stromal tumors: KIT activation and cytogenetic alterations. Human Pathol 33: 484–495, 2002.CrossRefGoogle Scholar
  15. 15.
    Hirota S, Isozaki K, Moriyama X et al: Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279: 577–580, 1998.PubMedCrossRefGoogle Scholar
  16. 16.
    Hornick JL andFletcher CDM: Immunohistochemical staining for KIT (CD117) in soft tissue sarcomas is very limited in distribution. Am J Clin Pathol 117: 188–193, 2002.PubMedCrossRefGoogle Scholar
  17. 17.
    Isozaki K, Terris B, Belghiti J, et al: Germline-activating mutation in the kinase domain of KIT gene in familial gastrointestinal stromal tumors. Am J Pathol 157: 1581–1585, 2000.PubMedGoogle Scholar
  18. 18.
    Joensuu H, Roberts PJ Sarlomo-Rikala M, et al: Effect of tyrosine kinase inhibitor ST1-571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 344:1052–1056, 2001.PubMedCrossRefGoogle Scholar
  19. 19.
    Kindblom LG, Remotti HE, Aldenborg F, Meis-Kindblom JM: Gastrointestinal pacemaker cell tumor (GIPACT): Gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. Am J Pathol 152: 1259–1269, 1998.PubMedGoogle Scholar
  20. 20.
    Lasota J, Jasinski M, Sarlomo-Rikala M, Meittinnen M: Mutations in exon 11 of c-kit occur preferentially in malignant versus benign gastrointestinal stromal tumors and do not occur in leiomyomas and leiomyosarcomas. Am J Pathol 154: 53–60, 1999.PubMedGoogle Scholar
  21. 21.
    Lauwers GY, Erlandson RA, Casper ES, et al: Gastrointestinal autonomic nerve tumors: a clinicopathologic, immunohistochemical and ultrastructural study of 12 cases. Am J Surg Pathol 17: 887–893, 1993.PubMedGoogle Scholar
  22. 22.
    Lecoin L, Gabella G, Le Douarin N: Origin of the c-kit positive interstitial cells in the avian bowel. Development 122:725–733, 1996.PubMedGoogle Scholar
  23. 23.
    Lee JR, Joshi V, Griffin JW Jr, et al: Gastrointestinal autonomic nerve tumor: immunohistochemical and molecular identity with gastrointestinal stromal tumor. Am J Surg Pathol 25:979–987, 2001.PubMedCrossRefGoogle Scholar
  24. 24.
    Lux ML, Rubin BP, Biase TL, et al: KIT extracellular and kinase domain mutations in gastrointestinal stromal tumors. Am J Pathol 156: 791–795, 2000.PubMedGoogle Scholar
  25. 25.
    Maeda H, Yamagata A, Nishikawa S, et al: Requirement of c-kit for development of intestinal pacemaker system. Development 156: 791–792, 1992.Google Scholar
  26. 26.
    Mazur MT, Clark HB: Gastric stromal tumors. Reappraisal of histogenesis. Am J Surg Pathol 7: 507–519, 1983.PubMedGoogle Scholar
  27. 27.
    Miettinen M, El-Rifai W, Sobin LH, Lasota J: Evaluation of malignancy and prognosis of gastrointestinal stromal tumors: a review. Hum Pathol 33:478–483, 2002.PubMedCrossRefGoogle Scholar
  28. 28.
    Miettinen M, Furlong M, Sarlomo-Rikala M, et al: Gastrointestinal stromal tumors, intramural leiomyomas and leiomyosarcomas in the rectum and anus. A clinicopathologic, immunohistochemical and molecular genetic study of 144 cases. Am J Surg Pathol 25: 1121–1133, 2001.PubMedCrossRefGoogle Scholar
  29. 29.
    Miettinen M, Lasota J: Gastrointestinal stromal tumors-definition, clinical, histological, immunohistochemical, and molecular genetic features and differential diagnosis. Virchows Arch 438: 1–12, 2001.PubMedCrossRefGoogle Scholar
  30. 30.
    Miettinen M, Sarlomo-Rikala M, Lasota J: Gastrointestinal stromal tumors. Annales Chirurgiae et Gynaecologiae 87: 278–281, 1998.PubMedGoogle Scholar
  31. 31.
    Miettinen M, Sarlomo-Rikala M, Lasota J: Gastrointestinal stromal tumors:recent advances in understanding of their biology. Hum Pathol 30: 1213–1220, 1999.PubMedCrossRefGoogle Scholar
  32. 32.
    Miettinen M, Sarlomo-Rikala M, Sobin LH, Lasota J: Esophageal stromal tumors: a clinicopathologic, immunohistochemical and molecular genetic study of 17 cases and comparison with esophageal leiomyomas and leiomyosarcomas. Am J Surg Pathol 24: 211–222, 2000.PubMedCrossRefGoogle Scholar
  33. 33.
    Miettinen M, Virolainen M, Sarlomo-Rikala M: Gastrointestinal stromal tumors-value of CD34 antigen in their identification and separation from true leiomyomas and schwannomas. Am J Surg Pathol 19: 207–216, 1995.PubMedGoogle Scholar
  34. 34.
    Mikhael AI, Bacchi CE, Zarbo RJ, et al: CD34 expression in stromal tumors of the gastrointestinal tract. Appl Immunohistochem 2: 89–93, 1994.Google Scholar
  35. 35.
    Ming KW: Small intestinal stromal tumors with skeinoid fibers. Clinicopathological, immunohistochemical and ultrastructural investigations. Am J Surg Pathol 16:145–155, 1992.CrossRefGoogle Scholar
  36. 36.
    Montgomery E, Torbenson MS, Kaushal M, et al: -catenin immunohistochemistry separates mesenteric fibromatosis from gastrointestinal stromal tumor and sclerosing mesenteritis. Am J Surg Pathol 26: 1296–1301, 2002.PubMedCrossRefGoogle Scholar
  37. 37.
    Moskaluk CA, Tian Q, Marshall CR, et al: Mutations of c-kit JM domain are found in a minority of human gastrointestinal stromal tumors. Oncogene 18: 1897–1902, 1999.PubMedCrossRefGoogle Scholar
  38. 38.
    Nakahara M, Isozaki K, Hirota S, et al: A novel gain-of-function mutation of c-kit gene in gastrointestinal stromal tumors. Gastroenterology 115: 1090–1095, 1998.PubMedCrossRefGoogle Scholar
  39. 39.
    Nishida T, Hirota S, Tangiguchi M, et al: Familial gastrointestinal stromal tumors with germline mutations of the KIT gene. Nat Genet 19: 323–324, 1998.PubMedCrossRefGoogle Scholar
  40. 40.
    Reith JD, Goldblum JR, Lyles RH, Weiss SW: Extragastrointestinal (soft tissue) stromal tumors: an analysis of 48 cases with emphasis on histological predictors of outcome. Mod Pathol 13: 577–585, 2000.PubMedCrossRefGoogle Scholar
  41. 41.
    Rosai J. Ackerman’s surgical pathology (8th ed). Mosby, St Louis, 1995, pp. 645–647.Google Scholar
  42. 42.
    Rubin BP, Singer S, Tsao C, et al: KIT activation is a ubiquitous feature of gastrointestinal stromal tumors. Cancer Res 81: 8118–8121, 2001.Google Scholar
  43. 43.
    Debiec-Rychter M, Lasota J, Sarlomo-Rikala M, et al: Chromosomal aberrations in malignant gastrointestinal tumors correlation with c-KIT gene mutation. Cancer Genet Cytogenet 128: 24–30, 2001.PubMedCrossRefGoogle Scholar
  44. 44.
    Sakurai S, Fukusawa T, Chong JM, et al: Embyonic form of smooth muscle myosin heavy chain (SEmb/MCH-B) in gastrointestinal stromal tumor and interstitial cells of Cajal. Am J Pathol 154: 23–28, 1999.PubMedGoogle Scholar
  45. 45.
    Sarlomo-Rikala M, El-Rifai W, Andersson LC, et al: Different patterns of DNA copy changes in gastrointestinal stromal tumors, leiomyomas and schwannomas. Hum Pathol 29: 476–481, 1998.PubMedCrossRefGoogle Scholar
  46. 46.
    Sarlomo-Rikala M, Kovatich AJ, Barusevicius A, Miettinen M: CD117: a sensitive marker for gastrointestinal stromal tumors that is more specific than CD34. Mod Pathol 11: 728–734, 1998.PubMedGoogle Scholar
  47. 47.
    Savage DG, Antman KH: Imatinib mesylate-a new oral target-ed therapy. N Engl J Med 346: 683–693, 2002.PubMedCrossRefGoogle Scholar
  48. 48.
    Sircar K, Hewlett BR, Huizinga JD, et al: Interstitial cells of Cajal as precursors for gastrointestinal stromal tumors. Am J Surg Pathol 23: 377–389, 1999.PubMedCrossRefGoogle Scholar
  49. 49.
    Suster S: Gastrointestinal stromal tumors. Semin Diagn Pathol 13:297–313, 1996.PubMedGoogle Scholar
  50. 50.
    Tsuura Y, Hiraki H, Watanabe K, et al: Preferential localization of c-kit product in tissue mast cells, basal cells of the skin, epithelial cells of the breast, small cell lung carcinoma and seminoma/dysgerminoma in human: immunohistochemical study of formalin-fixed paraffin-embedded tissues. Virchows Arch 424: 135–141, 1994.PubMedCrossRefGoogle Scholar
  51. 51.
    Tworek JA, Goldblum JR, Weiss SW, et al: Stromal tumors of the abdominal colon: A clinicopathologic study of 20 cases. Am J Surg Pathol 23: 937–945, 1999.PubMedCrossRefGoogle Scholar
  52. 52.
    Tworek JA, Goldblum JR, Weiss SW, et al: Stromal tumors of the anorectum: A clinicopathologic study of 22 cases. Am J Surg Pathol 23: 946–954, 1999.PubMedCrossRefGoogle Scholar
  53. 53.
    van de Rijn M, Hendrickson MR, Rouse RV: The CD34 expression by gastrointestinal stromal tumors. Hum Pathol 25: 766–771, 1994.PubMedCrossRefGoogle Scholar
  54. 54.
    Van Oosterom AT, Judson I, Verweij J, et al: Safety and efficacy of imatinib (ST1-571) in metastatic gastrointestinal stromal tumors: A phase 1 study. Lancet 358: 1421–1423, 2001.PubMedCrossRefGoogle Scholar
  55. 55.
    Vliagoftis H, Worobec AS, Metcalfe DD: The proto-oncogene c-kit and c-kit ligand in human disease. J Alleg Clin Immunol 100: 435–440, 1997.CrossRefGoogle Scholar
  56. 56.
    Walker P, Dvorak AM: Gastrointestinal autonomic nerve (GAN) tumor: ultrastructural evidence for a newly recognised entity. Arch Pathol Lab Med 110:309–316, 1986.PubMedGoogle Scholar
  57. 57.
    Wardelmann E, Neidt I, Bierhoff E, et al: C-kit mutations in gastrointestinal stromal tumors occur preferentially in the spindle rather than in the epithelioid cell variant. Mod Pathol 15: 125–136, 2002.PubMedCrossRefGoogle Scholar
  58. 58.
    Yantiss RK, Spiro IJ Compton CC, Rosenberg AE: Gastrointestinal stromal tumor versus intra-abdominal fibromatosis of the bowel wall. Am J Surg Pathol 24: 947–957, 2000.PubMedCrossRefGoogle Scholar
  59. 59.
    Young HM, Ciampoli D, Southwell BR, Newgreen DF: Origin of interstitial cells of Cajal in the mouse intestine. Dev Biol 180:97–107, 1996.PubMedCrossRefGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2003

Authors and Affiliations

  1. 1.University Department of PathologyWestern InfirmaryGlasgowUK
  2. 2.University Department of Pathology, Faculty of MedicineUniversity of ColomboSri Lanka

Personalised recommendations