Skip to main content
Log in

The 6-Hydroxydopamine model of parkinson’s disease

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The neurotoxin 6-hydroxydopamine (6-OHDA) continues to constitute a valuable topical tool used chiefly in modeling Parkinson’s disease in the rat. The classical method of intracerebral infusion of 6-OHDA, involving a massive destruction of nigrostriatal dopaminergic neurons, is largely used to investigate motor and biochemical dysfunctions in Parkinson’s disease. Subsequently, more subtle models of partial dopaminergic degeneration have been developed with the aim of revealing finer motor deficits. The present review will examine the main features of 6-OHDA models, namely the mechanisms of neurotoxin-induced neurodegeneration as well as several behavioural deficits and motor dysfunctions, including the priming model, modeled by this means. An overview of the most recent morphological and biochemical findings obtained with the 6-OHDA model will also be provided, particular attention being focused on the newly investigated intracellular mechanisms at the striatal level (e.g., A2A and NMDA receptors, PKA, CaMKII, ERK kinases, as well as immediate early genes, GAD67 and peptides). Thanks to studies performed in the 6-OHDA model, all these mechanisms have now been hypothesised to represent the site of pathological dysfunction at cellular level in Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amalric M, H Moukhles, A Nieoullon and A Daszuta (1995) Complex deficits on reaction time performance following bilateral intrastriatal 6-OHDA infusion in the rat.Eur. J. Neurosci. 7, 972–980.

    PubMed  CAS  Google Scholar 

  • Andersson M, C Konradi and MA Cenci (2001) cAMP response element-binding protein is required for dopamine-dependent gene expression in the intact but not the dopamine-denervated striatum.J. Neurosci. 21, 9930–9943.

    PubMed  CAS  Google Scholar 

  • Andrew R, DG Watson, SA Best, JM Midgley, H Wenlong and RK Petty (1993) The determination of hydroxydopamines and other trace amines in the urine of parkinsonian patients and normal controls.Neurochem. Res. 18, 1175–1177.

    PubMed  CAS  Google Scholar 

  • Anichtchik OV, J Kaslin, N Peitsaro, M Scheinin and P Panula (2004) Neurochemical and behavioural changes in zebrafishDanio rerio after systemic administration of 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.J. Neurochem. 88, 443–453.

    PubMed  CAS  Google Scholar 

  • Arts MP and AR Cools (1998) Bilateral 6-hydroxydopamine lesion in the dopaminergic A8 cell group produces long-lasting deficits in motor programming of cats.Behav. Neurosci. 112, 102–115.

    PubMed  CAS  Google Scholar 

  • Asanuma M, H Hirata and JL Cadet (1998) Attenuation of 6-hydroxydopamine-induced dopaminergic nigrostriatal lesions in superoxide dismutase transgenic mice.Neuroscience 85, 907–917.

    PubMed  CAS  Google Scholar 

  • Avila-Costa MR, L Colin-Barenque, P Aley-Medina, AL Valdez, JL Librado, EF Martinez and TI Fortoul (2005) Bilateral increase of perforated synapses after unilateral dopamine depletion.Int. J. Neurosci. 115, 79–86.

    PubMed  CAS  Google Scholar 

  • Barneoud P, E Descombris, N Aubin and DN Abrous (2000) Evaluation of simple and complex sensorimotor behaviours in rats with a partial lesion of the dopaminergic nigrostriatal system.Eur. J. Neurosci. 12, 322–336.

    PubMed  CAS  Google Scholar 

  • Barone P, M Morelli, M Popoli, G Cicarelli, G Campanella and G Di Chiara (1994) Behavioural sensitization in 6-hydroxydopamine lesioned rats involves the dopamine signal transduction: changes in DARPP-32 phosphorylation.Neuroscience 61, 867–873.

    PubMed  CAS  Google Scholar 

  • Bensadoun JC, O Mirochnitchenko, M Inouye, P Aebischer and AD Zurn (1998) Attenuation of 6-OHDA-induced neurotoxicity in glutathione peroxidase transgenic mice.Eur. J. Neurosci. 10, 3231–3236.

    PubMed  CAS  Google Scholar 

  • Betarbet R, O Poisik, TB Sherer and JT Greenamyre (2004) Differential expression and ser897 phosphorylation of striatalN-methyl-D-aspartate receptor subunit NR1 in animal models of Parkinson’s disease.Exp. Neurol. 187, 76–85.

    PubMed  CAS  Google Scholar 

  • Blandini F, G Levandis, E Bazzini, G Nappi and MT Armentero (2007) Time-course of nigrostriatal damage, sal ganglia metabolic changes and behavioural alterations following intrastriatal injection of 6-hydroxydopamine in the rat: new clues from an old model.Eur. J. Neurosci. 25, 397–405.

    PubMed  Google Scholar 

  • Blum D, S Torch, N Lambeng, M Nissou, AL Benabid, R Sadoul and JM Verna (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease.Prog. Neurobiol. 65, 135–172

    PubMed  CAS  Google Scholar 

  • Breese GR and TD Traylor (1972) Developmental characteristics of brain catecholamines and tyrosine hydroxylase in the rat: effects of 6-hydroxydopamine.Br. J. Pharmacol. 44, 210–222.

    PubMed  CAS  Google Scholar 

  • Breese GR, AA Baumeister, TJ McCown, SG Emerick, GD Frye, K Crotty and RA Mueller (1984) Behavioral differences between neonatal and adult 6-hydroxydopamine-treated rats to dopamine agonists: relevance to neurological symptoms in clinical syndromes with reduced brain dopamine.J. Pharmacol. Exp. Ther. 231, 343–354.

    PubMed  CAS  Google Scholar 

  • Breese GR, DJ Knapp, HE Criswell, SS Moy, ST Papadeas and BL Blake (2005) The neonate-6-hydroxydopamine-lesioned rat: a model for clinical neuroscience and neurobiological principles.Brain Res. Rev. 48, 57–73.

    PubMed  CAS  Google Scholar 

  • Cadet JL and C Brannock (1998) Free radicals and the pathobiology of brain dopamine systems.Neurochem. Int. 32, 117–131.

    PubMed  CAS  Google Scholar 

  • Cadet JL, M Katz, V Jackson-Lewis and S Fahn (1989) Vitamin E attenuates the toxic effects of intrastriatal injection of 6-hydroxydopamine (6-OHDA) in rats: behavioral and biochemical evidence.Brain Res. 476, 10–15.

    PubMed  CAS  Google Scholar 

  • Calabresi P, NB Mercuri, G Sancesario and G Bernardi (1993) Electrophysiology of dopamine-denervated striatal neurons. Implications for Parkinson’s disease.Brain 116, 433–452.

    PubMed  Google Scholar 

  • Callio J, TD Oury and CT Chu (2005) Manganese superoxide dismutase protects against 6-hydroxydopamine injury in mouse brains.J. Biol. Chem. 280, 18536–18542.

    PubMed  CAS  Google Scholar 

  • Caronti B, V Margotta, A Merante, FE Pontieri and G Palladini (1999) Treatment with 6-hydroxydopamine in planaria (Dugesia gonocephala s.l.): morphological and behavioral study.Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 123, 201–207.

    PubMed  CAS  Google Scholar 

  • Carta AR, S Fenu, P Pala, E Tronci and M Morelli (2003) Selective modifications in GAD67 mRNA levels in striatonigral and striatopallidal pathways correlate to dopamine agonist priming in 6-hydroxydopamine-lesioned rats.Eur. J. Neurosci. 18, 2563–2572.

    PubMed  CAS  Google Scholar 

  • Cass WA, LE Peters and MP Smith (2005) Reductions in spontaneous locomotor activity in aged male, but not female, rats in a model of early Parkinson’s disease.Brain Res. 1034, 153–161.

    PubMed  CAS  Google Scholar 

  • Cenci MA, CS Lee and A Bjorklund (1998) L-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA.Eur. J. Neurosci. 10, 2694–2706.

    PubMed  CAS  Google Scholar 

  • Chang JW, SR Wachtel, D Young and UJ Kang (1999) Biochemical and anatomical characterization of forepaw adjusting steps in rat models of Parkinson’s disease: studies on medial forebrain bundle and striatal lesions.Neuroscience 88, 617–628.

    PubMed  CAS  Google Scholar 

  • Chase TN and JD Oh (2000) Striatal dopamine- and gluta- mate-mediated dysregulation in experimental parkinsonism.Trends Neurosci. 23, S86-S91.

    PubMed  CAS  Google Scholar 

  • Choi WS, SY Yoon, TH Oh, EJ Choi, KL O’Malley and YJ Oh (1999) Two distinct mechanisms are involved in 6-hydroxy-dopamine- and MPP+-induced dopaminergic neuronal cell death: role of caspases, ROS, and JNK.J. Neurosci. Res. 57, 86–94.

    PubMed  CAS  Google Scholar 

  • Cohen G (1984) Oxy-radical toxicity in catecholamine neurons.Neurotoxicology 5, 77–82.

    PubMed  CAS  Google Scholar 

  • Cohen G, RE Heikkila, B Allis, F Cabt, D Dembiec, D MacNamee, C Mytilineou and B Winston (1976) Destruction of sympathetic nerve terminals by 6-hydroxydopamine: protection by 1-phenyl-3-(2-thiazolyl)-2-thiourea, dieth-yldithiocarmate, methimazole, cysteamine, ethanol and n-butanol.J. Pharmacol. Exp. Ther. 199, 336–352.

    PubMed  CAS  Google Scholar 

  • Cole RL, C Konradi, J Douglass and SE Hyman (1995) Neuronal adaptation to amphetamine and dopamine: molecular mechanisms of prodynorphin gene regulation in rat striatum.Neuron 14, 813–823.

    PubMed  CAS  Google Scholar 

  • Consolo S, M Morelli, M Rimoldi, S Giorgi and G Di Chiara (1999) Increased striatal expression of glutamate decarboxylase 67 after priming of 6-hydroxydopamine-lesioned rats.Neuroscience 89, 1183–1187.

    PubMed  CAS  Google Scholar 

  • Cousins MS and JD Salamone (1996) Skilled motor deficits in rats induced by ventrolateral striatal dopamine depletions: behavioral and pharmacological characterization.Brain Res. 732,186–194.

    PubMed  CAS  Google Scholar 

  • Crocker SJ, M Morelli, N Wigle, Y Nakabeppu and GS Robertson (1998) D1- Receptor-related priming is attenuated by antisense-meditated ‘knockdown’ offos-B expression.Mol. Brain Res. 53, 69–77.

    PubMed  CAS  Google Scholar 

  • Crofts HS, JW Dalley, P Collins, JC Van Denderen, BJ Everitt, TW Robbins and AC Roberts (2001) Differential effects of 6-OHDA lesions of the frontal cortex and caudate nucleus on the ability to acquire an attentional set.Cereb. Cortex 11, 1015–1026.

    PubMed  CAS  Google Scholar 

  • Cronin-Golomb A, S Corkin and JH Growdon (1994) Impaired problem solving in Parkinson’s disease: impact of a set-shifting deficit.Neuropsychologia 32, 579–593.

    PubMed  CAS  Google Scholar 

  • D’Hooge R and PP De Deyn (2001) Applications of the Morris water maze in the study of learning and memory.Brain Res. Rev. 36, 60–90.

    PubMed  CAS  Google Scholar 

  • Dash PK, KA Karl, MA Colicos, R Prywes and ER Kandel (1991) cAMP response element-binding protein is activated by Ca2+/calmodulin- as well as cAMP-dependent protein kinase.Proc. Natl. Acad. Sci. USA 88, 5061–5065.

    PubMed  CAS  Google Scholar 

  • Dauer W and S Przedborski (2003) Parkinson’s disease: mechanisms and models.Neuron 39, 889–909.

    PubMed  CAS  Google Scholar 

  • Day M, Z Wang, J Ding, X An, CA Ingham, AF Shering, D Wokosin, E Ilijic, Z Sun, AR Sampson, E Mugnaini, AY Deutch, SR Sesack, GW Arbuthnott and DJ Surmeier (2006) Selective elimination of glutamatergic synapses on striato-pallidal neurons in Parkinson disease models.Nat. Neurosci. 9, 251–259.

    PubMed  CAS  Google Scholar 

  • Deumens R, A Blokland and J Prickaerts (2002) Modeling Parkinson’s disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway.Exp. Neurol. 175, 303–317.

    PubMed  CAS  Google Scholar 

  • Di Chiara G, M Morelli, P Barone and F Pontieri (1992) Priming as a model of behavioural sensitization.Dev. Pharmacol. Ther. 18, 223–227.

    PubMed  Google Scholar 

  • Double KL, M Maywald, M Schmittel, P Riederer and M Gerlach (1998)In vitro studies of ferritin iron release and neurotoxicity.J. Neurochem. 70, 2492–2499.

    PubMed  CAS  Google Scholar 

  • Dunah AW and DG Standaert (2001) Dopamine D1 receptordependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane.J. Neurosci. 21, 5546–5558.

    PubMed  CAS  Google Scholar 

  • Dunah AW, Y Wang, RP Yasuda, K Kameyama, RL Huganir, BB Wolfe and DG Standaert (2000) Alterations in subunit expression, composition, and phosphorylation of striatalN-methyl-D-aspartate glutamate receptors in a rat 6-hydroxydopamine model of Parkinson’s disease.Mol. Pharmacol. 57, 342–352.

    PubMed  CAS  Google Scholar 

  • Endepols H, J Schul, HC Gerhardt and W Walkowiak (2004) 6-hydroxydopamine lesions in anuran amphibians: a new model system for Parkinson’s disease?J. Neurobiol. 60, 395–410.

    PubMed  Google Scholar 

  • Eslamboli A, HF Baker, RM Ridley and LE Annett (2003) Sensorimotor deficits in a unilateral intrastriatal 6-OHDA partial lesion model of Parkinson’s disease in marmoset monkeys.Exp. Neurol. 183, 418–429.

    PubMed  CAS  Google Scholar 

  • Ferré S, BB Fredholm, M Morelli, P Popoli and K Fuxe (1997) Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the sal ganglia.Trends Neurosci. 20, 482–487.

    PubMed  Google Scholar 

  • Finn M, A Jassen, P Baskin and JD Salamone (1997) Tremulous characteristics of the vacuous jaw movements induced by pilocarpine and ventrolateral striatal dopamine depletions.Pharmacol. Biochem. Behav. 57, 243–249.

    PubMed  CAS  Google Scholar 

  • Franklin L, L Bauce and QJ Pittman (1988) Depletion of central catecholamines reduces pressor responses to arginine vasopressin.Brain Res. 438, 295–298.

    PubMed  CAS  Google Scholar 

  • Fredduzzi S, R Moratalla, A Monopoli, B Cuellar, K Xu, E Ongini, F Impagnatiello, MA Schwarzschild and JF Chen (2002) Persistent behavioral sensitization to chronic L-DOPA requires A2A adenosine receptors.J. Neurosci. 22, 1054–1062.

    PubMed  CAS  Google Scholar 

  • Freund TF, JF Powell and AD Smith (1984) Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines.Neuroscience 13, 1189–1215.

    PubMed  CAS  Google Scholar 

  • Ganguly A and KA Keefe (2001) Unilateral dopamine depletion increases expression of the 2A subunit of the N-methyl-D-aspartate receptor in enkephalin-positive and enkephalin-negative neurons.Neuroscience 103, 405–412.

    PubMed  CAS  Google Scholar 

  • Gardoni F, C Bellone, F Cattabeni and M Di Luca (2001) Protein kinase C activation modulates alpha-calmodulin kinase II binding to NR2A subunit of N-methyl-D-aspartate receptor complex.J. Biol. Chem. 276, 7609–7613.

    PubMed  CAS  Google Scholar 

  • Garner CD and JP Nachtman (1989) Manganese catalyzed auto-oxidation of dopamine to 6-hydroxydopaminein vitro.Chem. Biol. Interact. 69, 345–351.

    PubMed  CAS  Google Scholar 

  • Gasrri A, A Sulli, R Innocenzi, C Pacitti and JD Brioni (1996) Spatial memory impairment induced by lesion of the mesohippocampal dopaminergic system in the rat.Neuroscience 74, 1037–1044.

    Google Scholar 

  • Gerfen CR (2003) D1 dopamine receptor supersensitivity in the dopamine-depleted striatum animal model of Parkinson’s disease.Neuroscientist 9, 455–462.

    PubMed  CAS  Google Scholar 

  • Gerfen CR, TM Engber, LC Mahan, Z Susel, TN Chase, FJ Monsma Jr and DR Sibley (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and stria-topallidal neurons.Science 250, 1429–1432.

    PubMed  CAS  Google Scholar 

  • Gerfen CR, S Miyachi, R Paletzki and P Brown (2002) D1 dopamine receptor supersensitivity in the dopamine-depleted striatum results from a switch in the regulation of ERK1/2/MAP kinase.J. Neurosci. 22, 5042–5054.

    PubMed  CAS  Google Scholar 

  • Glinka Y and MB Youdim (1995) Inhibition of mitochondrial complexes I and IV by 6-hydroxydopamine.Eur. J. Pharmacol. 292, 329–332.

    PubMed  CAS  Google Scholar 

  • Glinka Y, KF Tipton and MB Youdim (1996) Nature of inhibition of mitochondrial respiratory complex I by 6-hydroxydopamine.J. Neurochem. 66, 2004–2010.

    PubMed  CAS  Google Scholar 

  • Hallett PJ, R Spoelgen, BT Hyman, DG Standaert and AW Dunah (2006) Dopamine D1 activation potentiates striatal NMDA receptors by tyrosine phosphorylation-dependent subunit trafficking.J. Neurosci. 26, 4690–4700.

    PubMed  CAS  Google Scholar 

  • Heim C, L Sova, T Kurz, W Kolasiewicz, H Schwegler and KH Sontag (2002) Partial loss of dopaminergic neurons in the substantia nigra, ventrotegmental area and the retrorubral area - model of the early beginning of Parkinson’s symptom- atology?J. Neural Transm. 109, 691–709.

    PubMed  CAS  Google Scholar 

  • Henderson JM, LE Annett, EM Torres and SB Dunnett (1998) Behavioural effects of subthalamic nucleus lesions in the hemiparkinsonian marmoset(Callithrix jacchus). Eur. J. Neurosci.10, 689–698.

    PubMed  CAS  Google Scholar 

  • Henry B, AR Crossman and JM Brotchie (1998) Characterization of enhanced behavioral responses to L-DOPA following repeated administration in the 6-hydroxydopamine-lesioned rat model of Parkinson’s disease.Exp. Neurol. 151, 334–342.

    PubMed  CAS  Google Scholar 

  • Hisatsune C, H Umemori, T Inoue, T Michikawa, K Kohda, K Mikoshi and T Yamamoto (1997) Phosphorylation-dependent regulation of N-methyl-D-aspartate receptors by calmodulin.J. Biol. Chem. 272, 20805–20810.

    PubMed  CAS  Google Scholar 

  • Hoglinger GU, G Carrard, PP Michel, F Medja, A Lombes, M Ruberg, B Friguet and EC Hirsch (2003) Dysfunction of mitochondrial complex I and the proteasome: interactions between two biochemical deficits in a cellular model of Parkinson’s disease.J. Neurochem. 86, 1297–1307.

    PubMed  Google Scholar 

  • Hudson JL, CG van Horne, I Stromberg, S Brock, J Clayton, J Masserano, BJ Hoffer and GA Gerhardt (1993) Correlation of apomorphine- and amphetamine-induced turning with nigrostriatal dopamine content in unilateral 6-hydroxydopamine lesioned rats.Brain Res. 626, 167–174.

    PubMed  CAS  Google Scholar 

  • Iancu R, P Mohapel, P Brundin and G Paul (2005) Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson’s disease in mice.Behav. Brain Res. 162, 1–10.

    PubMed  CAS  Google Scholar 

  • Ingham CA, SH Hood, B Van Maldegem, A Weenink and GW Arbuthnott (1993) Morphological changes in the rat neostriatum after unilateral 6-hydroxydopamine injections into the nigrostriatal pathway.Exp. Brain Res. 93, 17–27.

    PubMed  CAS  Google Scholar 

  • Ingham CA, SH Hood, P Taggart and GW Arbuthnott (1998) Plasticity of synapses in the rat neostriatum after unilateral lesion of the nigrostriatal dopaminergic pathway.J. Neurosci. 18, 4732–4743.

    PubMed  CAS  Google Scholar 

  • Jellinger K, L Linert, E Kienzl, E Herlinger and MB Youdim (1995) Chemical evidence for 6-hydroxydopamine to be an endogenous toxic factor in the pathogenesis of Parkinson’s disease.J. Neural Transm. Suppl. 46, 297–314.

    PubMed  CAS  Google Scholar 

  • Jiang H, V Jackson-Lewis, U Muthane, ADollison, M Ferreira, A Espinosa, B Parsons and S Przedborski (1993) Adenosine receptor antagonists potentiate dopamine receptor agonist-induced rotational behavior in 6-hydroxydopamine-lesioned rats.Brain Res. 613, 347–351.

    PubMed  CAS  Google Scholar 

  • Jonsson G (1980) Chemical neurotoxins as denervation tools in neurobiology.Annu. Rev. Neurosci. 3, 169–187.

    PubMed  CAS  Google Scholar 

  • Kayadjanian N, RP Heavens, MJ Besson and DJ Sirinathsinghji (1996) Striatal NMDAR2B mRNA expression after bilateral cortical and unilateral nigral deafferentation.Neuroreport 7, 713–716.

    PubMed  CAS  Google Scholar 

  • Kelsey JE, SD Mague, RS Pijanowski, RC Harris, NW Kleckner and RT Matthews (2005) NMDA receptor antagonists ameliorate the stepping deficits produced by unilateral medial forebrain bundle injections of 6-OHDA in rats.Psychopharmacology 175, 179–188.

    Google Scholar 

  • Kienzl E, K Jellinger, H Stachelberger and W Linert (1999) Iron as catalyst for oxidative stress in the pathogenesis of Parkinson’s disease?Life Sci. 65, 1973–1976.

    PubMed  CAS  Google Scholar 

  • Kostrzewa RM, R Brus, JH Kalbfleisch, KW Perry and RW Fuller (1994) Proposed animal model of attention deficit hyperactivity disorder.Brain Res. Bull. 34, 161–167.

    PubMed  CAS  Google Scholar 

  • Kostrzewa RM, JP Kostrzewa and R Brus (2003) Dopamine receptor supersensitivity: an outcome and index of neurotoxicity.Neurotox. Res. 5, 111–118.

    PubMed  Google Scholar 

  • Kostrzewa RM, JP Kostrzewa, R Brus, RA Kostrzewa and P Nowak (2006) Proposed animal model of severe Parkinson’s disease: neonatal 6-hydroxydopamine lesion of dopaminergic innervation of striatum.J. Neural Transm. Suppl. 70, 277–279.

    PubMed  CAS  Google Scholar 

  • Larson GM, BH Ahlman, CT Bombeck and LM Nyhus (1984) The effect of chemical and surgical sympathectomy on gastric secretion and innervation.Scand. J. Gastroenterol. Suppl. 89, 27–32.

    PubMed  CAS  Google Scholar 

  • Levin BE and HL Katzen (2005) Early cognitive changes and nondementing behavioral abnormalities in Parkinson’s disease.Adv. Neurol. 96, 84–94.

    PubMed  Google Scholar 

  • Liao RM, SC Fowler and MJ Kallman (1997) Quantifying operant behavior deficits in rats with bilateral 6-hydroxydopamine lesions of the ventrolateral striatum.Chin. J. Physiol. 40, 71–78.

    PubMed  CAS  Google Scholar 

  • Lindner MD, CK Cain, MA Plone, BR Frydel, TJ Blaney, DF Emerich DF and MR Hoane (1999) Incomplete nigrostriatal dopaminergic cell loss and partial reductions in striatal dopamine produce akinesia, rigidity, tremor and cognitive deficits in middle-aged rats.Behav. Brain Res. 102, 1–16.

    PubMed  CAS  Google Scholar 

  • Linert W, E Herlinger, RF Jameson, E Kienzl, K Jellinger and MB Youdim (1996) Dopamine, 6-hydroxydopamine, iron, and dioxygen - their mutual interactions and possible implication in the development of Parkinson’s disease.Biochim. Biophys. Acta 1316, 160–168.

    PubMed  Google Scholar 

  • Lotharius J, LL Dugan and KL O’Malley (1999) Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons.J. Neurosci. 19, 1284–1293.

    PubMed  CAS  Google Scholar 

  • Lundblad M, M Andersson, C Winkler, D Kirik, N Wierup and MA Cenci (2002) Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson’s disease.Eur. J. Neurosci. 15, 120–132.

    PubMed  CAS  Google Scholar 

  • Lundblad M, B Picconi, H Lindgren and MA Cenci (2004) A model of L-DOPA-induced dyskinesia in 6-hydroxydopamine lesioned mice: relation to motor and cellular parameters of nigrostriatal function.Neurobiol. Dis. 16, 110–123.

    PubMed  CAS  Google Scholar 

  • Luthman J, A Fredriksson, E Sundstrom, G Jonsson and T Archer (1989) Selective lesion of central dopamine or noradrenaline neuron systems in the neonatal rat: motor behavior and monoamine alterations at adult stage.Behav. Brain Res. 33, 267–277.

    PubMed  CAS  Google Scholar 

  • Luthman J, M Bassen, A Fredriksson and T Archer (1997) Functional changes induced by neonatal cerebral 6-hydroxy-dopamine treatment: effects of dose levels on behavioral parameters.Behav. Brain Res. 82, 213–221.

    PubMed  CAS  Google Scholar 

  • Mandel RJ and PK Randall (1985) Quantification of lesion-induced dopaminergic supersensitivity using the rotational model in the mouse.Brain Res. 330, 358–363.

    PubMed  CAS  Google Scholar 

  • Marin C, E Aguilar, M Bonastre, E Tolosa and JA Obeso (2005) Early administration of entacapone prevents levodopa-induced motor fluctuations in hemiparkinsonian rats.Exp. Neurol. 192, 184–193.

    PubMed  CAS  Google Scholar 

  • Marshall JF, R Navarrete and JN Joyce (1989) Decreased striatal D1 binding density following mesotelencephalic 6-hydroxydopamine injections: an autoradiographic analysisBrain Res. 493, 247–257.

    PubMed  CAS  Google Scholar 

  • Mempel E and M Wieczorek (1990) Parkinson’s syndrome induced in cats by the use of 6-hydroxydopamine. Observations of behavior and motor disorders.Acta Neurobiol. Exp. 50, 269–279.

    CAS  Google Scholar 

  • Menegoz M, LF Lau, D Herve, RL Huganir and JA Girault (1995) Tyrosine phosphorylation of NMD A receptor in rat striatum: effects of 6-OH-dopamine lesions.Neuroreport 7, 125–128.

    PubMed  CAS  Google Scholar 

  • Meshul CK, N Emre, CM Nakamura, C Allen, MK Donohue and JF Buckman (1999) Time-dependent changes in striatal glutamate synapses following a 6-hydroxydopamine lesion.Neuroscience 88, 1–16.

    PubMed  CAS  Google Scholar 

  • Mitchell IJ and CB Carroll (1997) Reversal of parkinsonian symptoms in primates by antagonism of excitatory amino acid transmission: potential mechanisms of action.Neurosci. Biobehav. Rev. 21, 469–475.

    PubMed  CAS  Google Scholar 

  • Montoya CP, LJ Campbell-Hope, KD Pemberton and SB Dunnett (1991) The “staircase test”: a measure of independent forelimb reaching and grasping abilities in rats.J. Neurosci. Meth. 36, 219–228.

    CAS  Google Scholar 

  • Morelli M and G Di Chiara (1987) Agonist-induced homologous and heterologous sensitization to D-1- and D-2-dependent contraversive turning.Eur. J. Pharmacol. 141, 101–107.

    PubMed  CAS  Google Scholar 

  • Morelli M and G Di Chiara (1990) Stereospecific blockade ofN-methyl-D-aspartate transmission by MK 801 prevents priming of SKF 38393-induced turning.Psychopharmacology 101, 287–288.

    PubMed  CAS  Google Scholar 

  • Morelli M, S Fenu and G Di Chiara (1987) Behavioural expression of D-1 receptor supersensitivity depends on previous stimulation of D-2 receptors.Life Sci. 40, 245–251.

    PubMed  CAS  Google Scholar 

  • Morelli M, S Fenu, L Garau and G Di Chiara (1989) Time and dose dependence of the ‘priming’ of the expression of dopamine receptor supersensitivity.Eur. J. Pharmacol. 162, 329–335.

    PubMed  CAS  Google Scholar 

  • Morelli M, S Fenu, A Pinna, A Cozzolino, A Carta and G Di Chiara (1993a) “Priming” to dopamine agonist-induced contralateral turning as a model of non-associative sensitization to the expression of the post-synaptic dopamine message.Behav. Pharmacol. 4, 389–397.

    PubMed  CAS  Google Scholar 

  • Morelli M, FE Pontieri, I Linfante, F Orzi and G Di Chiara (1993b) Local cerebral glucose utilization after D1 receptor stimulation in 6-OHDA lesioned rats: effect of sensitization (priming) with a dopaminergic agonist.Synapse 13, 264–269.

    PubMed  CAS  Google Scholar 

  • Moses D, A Gross and JP Finberg (2004) Rasagiline enhances L-DOPA-induced contralateral turning in the unilateral 6-hydroxydopamine-lesioned guinea-pig.Neuropharmacology 47, 72–80.

    PubMed  CAS  Google Scholar 

  • Napolitano A, O Crescenzi, A Pezzella and G Prota (1995) Generation of the neurotoxin 6-hydroxydopamine by peroxidase/H2O2 oxidation of dopamine.J. Med. Chem. 38, 917–922.

    PubMed  CAS  Google Scholar 

  • Nichols AJ, AC Wilson and CR Hiley (1985) Effects of chemical sympathectomy with 6-hydroxydopamine on cardiac output and its distribution in the rat.Eur. J. Pharmacol. 109, 263–268.

    PubMed  CAS  Google Scholar 

  • Oh JD and TN Chase (2002) Glutamate-mediated striatal dys-regulation and the pathogenesis of motor response complications in Parkinson’s disease.Amino Acids 23, 133–139.

    PubMed  CAS  Google Scholar 

  • Oh JD, DS Russell, CL Vaughan and TN Chase (1998) Enhanced tyrosine phosphorylation of striatal NMD A receptor subunits: effect of dopaminergic denervation and L-DOPA administration.Brain Res. 813, 150–159.

    PubMed  CAS  Google Scholar 

  • Oh JD, CL Vaughan and TN Chase (1999) Effect of dopamine denervation and dopamine agonist administration on serine phosphorylation of striatal NMDA receptor subunits.Brain Res. 821, 433–442.

    PubMed  CAS  Google Scholar 

  • Oh JD, K Chartisathian, SM Ahmed and TN Chase (2003) Cyclic AMP responsive element binding protein phosphorylation and persistent expression of levodopa-induced response alterations in unilateral nigrostriatal 6-OHDA lesioned rats.J. Neurosci. Res. 72, 768–780.

    PubMed  CAS  Google Scholar 

  • Olsson M, G Nikkhah, C Bentlage and A Bjorklund (1995) Forelimb akinesia in the rat Parkinson model: differential effects of dopamine agonists and nigral transplants as assessed by a new stepping test.J. Neurosci. 15, 3863–3875.

    PubMed  CAS  Google Scholar 

  • Oueslati A, N Breysse, M Amalric, L Kerkerian-Le Goff and P Salin (2005) Dysfunction of the cortico-sal ganglia-cortical loop in a rat model of early parkinsonism is reversed by metabotropic glutamate receptor 5 antagonism.Eur. J. Neurosci. 22, 2765–2774.

    PubMed  Google Scholar 

  • Padiglia A, R Medda, A Lorrai, G Biggio, E Sanna and G Floris (1997) Modulation of 6-hydroxydopamine oxidation by various proteins.Biochem. Pharmacol. 53, 1065–1068.

    PubMed  CAS  Google Scholar 

  • Palumbo A, A Napolitano, P Barone and M d’Ischia (1999) Nitrite- and peroxide-dependent oxidation pathways of dopamine: 6-nitrodopamine and 6-hydroxydopamine formation as potential contributory mechanisms of oxidative stress- and nitric oxide-induced neurotoxicity in neuronal degeneration.Chem. Res. Toxicol. 12, 1213–1222.

    PubMed  CAS  Google Scholar 

  • Papa SM, TM Engber, AM Kask and TN Chase (1994) Motor fluctuations in levodopa treated parkinsonian rats: relation to lesion extent and treatment duration.Brain Res. 662, 69–74.

    PubMed  CAS  Google Scholar 

  • Papadeas ST, BL Blake, DJ Knapp and GR Breese (2004) Sustained extracellular signal-regulated kinase 1/2 phosphorylation in neonate 6-hydroxydopamine-lesioned rats after repeated D1-dopamine receptor agonist administration: implications for NMDA receptor involvement.J. Neurosci. 24, 5863–5876.

    PubMed  CAS  Google Scholar 

  • Perumal AS, WK Tordzro, M Katz, V Jackson-Lewis, TB Cooper, S Fahn and JL Cadet (1989) Regional effects of 6-hydroxydopamine (6-OHDA) ton free radical scavengers in rat brain.Brain Res. 504, 139–141.

    PubMed  CAS  Google Scholar 

  • Picconi B, F Gardoni, D Centonze, D Mauceri, MA Cenci, G Bernardi, P Calabresi and M Di Luca (2004) Abnormal Ca2+-calmodulin-dependent protein kinase II function mediates synaptic and motor deficits in experimental parkinsonism.J. Neurosci. 24, 5283–5291.

    PubMed  CAS  Google Scholar 

  • Pileblad E, T Magnusson and B Fornstedt (1989) Reduction of brain glutathione by L-buthionine sulfoximine potentiates the dopamine-depleting action of 6-hydroxydopamine in rat striatum.J. Neurochem. 52, 978–980.

    PubMed  CAS  Google Scholar 

  • Pilowsky PM, MJ Morris, V Kapoor, MJ West and JP Chalmers (1986) Role of renal nerve activity, plasma catecholamines and plasma vasopressin in cardiovascular responses to intracisternal neurotoxins in the rabbit.J. Auton. Nerv. Syst. 17, 109–120.

    PubMed  CAS  Google Scholar 

  • Pinna A, M Morelli, B Drukarch and JC Stoof (1997) Priming of 6-hydroxydopamine-lesioned rats with L-DOPA or quinpirole results in an increase in dopamine D1 receptor-dependent cyclic AMP production in striatal tissue.Eur. J. Pharmacol. 331, 23–26.

    PubMed  CAS  Google Scholar 

  • Pinna A, C Corsi, AR Carta, V Valentini, F Pedata and M Morelli (2002) Modification of adenosine extracellular levels and adenosine A(2A) receptor mRNA by dopamine denervation.Eur. J. Pharmacol. 446, 75–82.

    PubMed  CAS  Google Scholar 

  • Ramesh V and V Mohan-Kumar (2000) Changes in sleep-wakefulness after 6-hydroxydopamine lesion of the preoptic area.Neuroscience 98, 549–553.

    PubMed  CAS  Google Scholar 

  • Ridet JL, JC Bensadoun, N Deglon, P Aebischer and AD Zurn (2006) Lentivirus-mediated expression of glutathione per-oxidase: neuroprotection in murine models of Parkinson’s disease.Neurobiol. Dis. 21, 29–34.

    PubMed  CAS  Google Scholar 

  • Ridley RM, RM Cummings, A Leow-Dyke and HF Baker (2006) Neglect of memory after dopaminergic lesions in monkeys.Behav. Brain Res. 166, 253–262.

    PubMed  CAS  Google Scholar 

  • Salamone JD, K Mahan and S Rogers (1993) Ventrolateral striatal dopamine depletions impair feeding and food handling in rats.Pharmacol. Biochem. Behav. 44, 605–610.

    PubMed  CAS  Google Scholar 

  • Salamone JD, AJ Mayorga, JT Trevitt, MS Cousins, A Conlan and A Nawab (1998) Tremulous jaw movements in rats: a model of parkinsonian tremor.Prog. Neurobiol. 56, 591–611.

    PubMed  CAS  Google Scholar 

  • Samuel D, M Errami and A Nieoullon (1990) Localization ofN-methyl-D-aspartate receptors in the rat striatum: effects of specific lesions on the [3H3-(2-carboxypiperazin-4-yl) propyl-1-phosphonic acid binding.J. Neurochem. 54, 1926–1933.

    PubMed  CAS  Google Scholar 

  • Schallert T, SM Fleming, JL Leasure, JL Tillerson and ST Bland (2000) CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury.Neuropharmacology 39, 777–787.

    PubMed  CAS  Google Scholar 

  • Schiffmann SN, O Jacobs and JJ Vanderhaeghen (1991) Striatal restricted adenosine A2 receptor (RDC8) is expressed by enkephalin but not by substance P neurons: anin situ hybridization histochemistry study.J. Neurochem. 57, 1062–1067.

    PubMed  CAS  Google Scholar 

  • Schwarzkopf SB, JP Bruno, T Mitra and JR Ison (1996) Effects of haloperidol and SCH 23390 on acoustic startle in animals depleted of dopamine as neonates: implications for neuropsychiatric syndromes.Psychopharmacology 123, 258–266.

    PubMed  CAS  Google Scholar 

  • Sgamto V, C Pages, M Rogard, MJ Besson, J Caboche (1998) Extracellular signal-regulated kinase (ERK) controls immediate early gene induction on corticostriatal stimulation.J. Neurosci. 18, 8814–8825.

    Google Scholar 

  • Sheng M, MA Thompson and ME Greenberg (1991) CREB: a Ca(2+)-regulated transcription factor phosphorylated by calmodulin-dependent kinases.Science 252, 1427–1430.

    PubMed  CAS  Google Scholar 

  • Somogyi P, JP Bolam, S Totterdell and AD Smith (1981) Monosynaptic input from the nucleus accumbens — ventral striatum region to retrogradely labelled nigrostriatal neurones.Brain Res. 217, 245–263.

    PubMed  CAS  Google Scholar 

  • Soto-Otero R, E Mendez-Alvarez, A Hermida-Ameijeiras, AM Munoz-Patino and JL Landeira-Garcia (2000) Autoxidation and neurotoxicity of 6-hydroxydopamine in the presence of some antioxidants: potential implication in relation to the pathogenesis of Parkinson’s disease.J. Neurochem. 74, 1605–1612.

    PubMed  CAS  Google Scholar 

  • Storch A, A Kaftan, K Burkhardt and J Schwarz (2000) 6-Hydroxydopamine toxicity towards human SH-SY5Y dopaminergic neuroblastoma cells: independent of mitochondrial energy metabolism.J. Neural Transm. 107, 281–293.

    PubMed  CAS  Google Scholar 

  • Sudo A (1985) Decrease in adrenaline content of various organs of the rat after 6-hydroxydopamine.Eur. J. Pharmacol. 114, 79–83.

    PubMed  CAS  Google Scholar 

  • Sunn N, PJ Harris and C Bell (1990) Effects on renal sympathetic axons in dog of acute 6-hydroxydopamine treatment in combination with selective neuronal uptake inhibitors.Br. J. Pharmacol. 99, 655–660.

    PubMed  CAS  Google Scholar 

  • Takasuna M and T Iwasaki (1996) Active and passive avoidance learning in rats neonatally treated with intraventricular 6-hydroxydopamine.Behav. Brain Res. 74, 119–126.

    PubMed  CAS  Google Scholar 

  • Thoenen H (1972) Surgical, immunological and chemical sympathectomy, In:Handbook of Experimental Pharmacology (Blaschko H and E Muscholl, Eds.) (Springer:Berlin)33, 813–844.

    Google Scholar 

  • Turle-Lorenzo N, N Breysse, G Baunez and M Amalric (2005) Functional interaction between mGlu 5 and NMDA receptors in a rat model of Parkinson’s disease.Psychopharmacology 179, 117–127.

    PubMed  CAS  Google Scholar 

  • Ulas J and CW Cotman (1996) Dopaminergic denervation of striatum results in elevated expression of NR2A subunit.Neuroreport 7, 1789–1793.

    PubMed  CAS  Google Scholar 

  • Ungerstedt U and G Arbuthnott (1970) Quantitative recording of rotational behavior in rats after 6-hydroxydopamine lesions of the nigrostriatal dopamine system.Brain Res. 24, 485–493.

    PubMed  CAS  Google Scholar 

  • Vallone D, MT Pellecchia, M Morelli, P Verde, G DiChiara and P Barone (1997) Behavioural sensitization in 6-hydroxydo- pamine-lesioned rats is related to compositional changes of the AP-1 transcription factor: evidence for induction offos-B- andjun-D-related proteins.Mol. Brain Res. 52, 307–317.

    PubMed  CAS  Google Scholar 

  • Van de Witte SV, B Drukarch, JC Stoof and P Voorn (1998) Priming with L-DOPA differently affects dynorphin and substance P mRNA levels in the striatum of 6-hydroxydopa-mine-lesioned rats after challenge with dopamine D1-receptor agonist.Mol. Brain Res. 61, 219–223.

    PubMed  Google Scholar 

  • Van Kampen JM, EG McGeer and AJ Stoessl (2000) Dopamine transporter function assessed by antisense knockdown in the rat: protection from dopamine neurotoxicity.Synapse 37, 171–178.

    PubMed  Google Scholar 

  • Villanueva MM, P Soares-da-Silva and W Osswald (1994) Effect of sympathetic denervation on the relaxing responses of rabbit arterial smooth muscle.J. Auton. Pharmacol. 14, 275–281.

    PubMed  CAS  Google Scholar 

  • Wang YT and MW Salter (1994) Regulation of NMDA receptors by tyrosine kinases and phosphatases.Nature 369, 233–235.

    PubMed  CAS  Google Scholar 

  • Whishaw IQ, NC Woodward, E Miklyaeva and SM Pellis (1997) Analysis of limb use by control rats and unilateral DA-depleted rats in the Montoya staircase test: movements, impairments and compensatory strategies.Behav. Brain Res. 89, 167–177.

    PubMed  CAS  Google Scholar 

  • Woodlee MT, AM Asseo-Garcia, X Zhao, SJ Liu, TA Jones and T Schallert (2005) Testing forelimb placing “across the midline” reveals distinct, lesion-dependent patterns of recovery in rats.Exp. Neurol. 191, 310–317.

    PubMed  Google Scholar 

  • Wu Y, D Blum, MF Nissou, AL Benabid and JM Verna (1996) Unlike MPP+, apoptosis induced by 6-OHDA in PC12 cells is independent of mitochondrial inhibition.Neurosci. Lett. 221, 69–71.

    PubMed  CAS  Google Scholar 

  • Yanai J,WF Silverman and D Shamir (1995) An avian model for the reversal of 6-hydroxydopamine induced rotating behaviour by neural grafting.Neurosci. Lett. 187, 153–156.

    PubMed  CAS  Google Scholar 

  • Youdim MB, G Stephenson and D Ben Shachar (2004) Ironing iron out in Parkinson’s disease and other neurodegenerative diseases with iron chelators: a lesson from 6-hydroxydopamine and iron chelators, desferal and VK-28.Ann. NYAcad. Sci. 1012, 306–325.

    CAS  Google Scholar 

  • Zrsky V, KP Datla, S Parkar, DK Rai, OI Aruoma and DT Dexter (2005) Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease.Free Radic. Res. 39, 1119–1125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna R. Carta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simola, N., Morelli, M. & Carta, A.R. The 6-Hydroxydopamine model of parkinson’s disease. neurotox res 11, 151–167 (2007). https://doi.org/10.1007/BF03033565

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033565

Keywords

Navigation