Neurotoxicity Research

, Volume 1, Issue 1, pp 3–25 | Cite as

Selective neurotoxins, chemical tools to probe the mind: The first Thirty years and beyond

  • Richard M. Kostrzewa


For centuries, starting with the advent of the microscope, cytotoxins have been known to non-selectively destroy nerves and other tissue cells. However, neurotoxins restricted in effect to one kind of neuron are an invention of the 20th century. One might reasonably trace the origins of this field to 1960 when the Nobel Laureates, R. Levi-Montalcini and S. Cohen, showed that an antibody to nerve growth factor effectively prevented development of sympathetic nerves in the absence of overt changes in dorsal root ganglia and other neural and non-neural tissues. The year 1967 marks discovery of 6-hydroxydopamine, the first of dozens of chemically-selective neurotoxins. As stated by the physiologist W.B. Cannon, neural function can be deduced by denoting absence-deficits. A wealth of knowledge in neuroscience has been realized through the use of neurotoxins. In the 21st century we foresee neurotoxins for virtually all neurochemically-identifiable or receptor-specific neurons, acting at/via functional proteins or characteristic DNA sites. These tools will provide us with a better means to probe the mind and thereby lead to a fuller understanding of the intricate roles of identifiable neuronal systems in integrative neuroscience.


Neurotoxins Amphetamine 5,7-Dihydroxytryptamine Glutamate 6-Hydroxydopa 6-Hydroxydopamine Methamphetamine MPTP Nerve growth factor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aizenman, E., White, W.R, Loring, R.H. and Rosenberg, P.A. (1990) A 3,4-dihydroxyphenylalanine oxidation product is a non-N-methyl-D-aspartate glutamatergic agonist in rat cortical neurons.Neurosci. Lett. 116, 168–171.PubMedCrossRefGoogle Scholar
  2. Appel, N.M., Contrera, J.R and DeSouza, E.B. (1989) Fenfluramine selectively and differentially decreases the density of serotonergic nerve terminals in rat brain: Evidence from immunocytochemical studies.J. Pharmacol. Exp. Ther. 249, 928–943.PubMedGoogle Scholar
  3. Azevedo, I. and Osswald, W. (1977) Adrenergic nerve degeneration induced by condensation products of adrenaline and acetaldehyde.Naunyn-Schmiedeberg’s Arch. Pharmacol. Exp. Pathol. 300, 139–144.CrossRefGoogle Scholar
  4. Ballard, P. A., Tetrud, J. W. and Langston, J.W. (1985) Permanent human parkinsonism due to 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP): Seven cases.Neurology 35, 949–956.PubMedGoogle Scholar
  5. Barlow, P. and Marchbanks, R.M. (1984) Effect of ethylcholine mustard on choline dehydrogenase and other enzymes of choline metabolism.J. Neurochem. 43, 1568–1573.PubMedCrossRefGoogle Scholar
  6. Baumgarten, H.G., Bjorklund, A., Lachenmayer, L., Nobin, A. and Stenevi, U. (1971) Long-lasting selective depletion of brain serotonin by 5,6-dihydroxytryptamine.Acta Physiol. Scand. Suppl. 373, 1–116.PubMedGoogle Scholar
  7. Baumgarten, H.G., Bjorklund, A., Holstein, A.F. and Nobin, A. (1972a) Chemical degeneration of indoleamine axons in rat brain by 5,6-dihydroxytryptamine. Ultrastructural study.Z. Zellforsch. 129, 259–271.CrossRefGoogle Scholar
  8. Baumgarten, H.G., Evetts, K.D., Holman, R.B., Iversen, L.L., Vogt, M. and Wilson, G. (1972b) Effects of 5,6-dihydroxytryptamine on monoaminergic neurons in the central nervous system of the rat.J. Neurochem. 19, 1587–1597.PubMedCrossRefGoogle Scholar
  9. Baumgarten, H.G. and Schlossberger, H.G. (1973) Effects of 5,6-dihydroxytryptamine on brain monoamine neurons in the rat. In Barchas, J. and Usdin, E. (Eds.),Serotonin and Behavior (New York: Academic Press), pp. 209–224.Google Scholar
  10. Baumgarten, H.G., Klemm, H.P., Lachenmayer, L., Bjorklund, A., Lovenberg, W. and Schlossberger, H.G. (1978a) Mode and mechanism of action of neurotoxic indoleamines: A review and progress report.Ann. NY Acad. Sci. 305, 3–24.PubMedCrossRefGoogle Scholar
  11. Baumgarten, H.G., Klemm, H.P., Lachenmayer, L. and Schlossberger, H.G. (1978b) Effect of drugs on the distribution of [14C]-5,6-dihydroxytryptamine and [14C]-5,7-dihydroxytryptamine in rat brain.Ann. NY Acad. Sci. 305, 107–118.PubMedCrossRefGoogle Scholar
  12. Baumgarten, H.G. and Lachenmayer, L. (1972) 5,7-dihydroxy-tryptamine. Improvement in chemical lesioning of indoleamine neurons in the mammalian brain.Z. Zellforsch. 135, 399–414.PubMedCrossRefGoogle Scholar
  13. Beal, M.F., Kowall, N.W, Ellison, D.W., Mazurek, M.F., Swartz, K.J. and Martin, J.B. (1986) Replication of the neurochemical characteristics of Huntington’s disease by quino-linic acid.Nature 321, 168–171.PubMedCrossRefGoogle Scholar
  14. Benes, EM., Paskewich, P.A., Davidson, J. and Domesick, V.B. (1985) The effects of haloperidol on synaptic patterns in the rat striatum.Brain Res. 329, 265–274.PubMedCrossRefGoogle Scholar
  15. Benveniste, H., Drejer, J., Schousboe, A. and Diemer, N.H. (1984) Elevation of the extracellular concentrations of glu-tamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis.J. Neurochem. 43, 1369–1374.PubMedCrossRefGoogle Scholar
  16. Bevan, S. and Docherty, R.J. (1993) Cellular mechanisms of action of capsaicin. In Wood, J.N. (Ed.),Capsaicin in the Study of Pain (New York: Academic Press), pp. 27–44.Google Scholar
  17. Bindoli, A., Rigobello, M.P. and Deeble, D.J. (1992) Biochemical and toxicological properties of the oxidation products of catecholamines.Free Radic. Biol. Med. 13, 391–405.PubMedCrossRefGoogle Scholar
  18. Bjorklund, A., Nobin, A. and Stenevi, U. (1973a) Effects of 5,6-dihydroxytryptamine on nerve terminal serotonin and serotonin uptake in the rat brain.Brain Res. 53, 117–127.PubMedCrossRefGoogle Scholar
  19. Bjorklund, A., Nobin, A. and Stenevi, U. (1973b) Use of neurotoxic dihydroxytryptamines as tools for morphological studies and localized lesioning of central indolamine neurons.Z. Zellforsch. 145, 479–501.PubMedCrossRefGoogle Scholar
  20. Blank, C.L., Kissinger, P.T. and Adams, R.N. (1972a) 5,6-Dihydroxyindole formation from oxidized 6-hydroxydopa-mine.Eur. J. Pharmacol. 19, 391–394.PubMedCrossRefGoogle Scholar
  21. Blank, C.L., McCreery, R.L., Wightman, R.M., Chey, W., Adams, R.N., Reid, J.R. and Smissman, E.E. (1972b) Intracyclization rates of 6-hydroxydopamine and 6-amino-dopamine analogs under physiological conditions.J. Med. Chem. 19, 178–180.CrossRefGoogle Scholar
  22. Blank, C.L., Murrill, E. and Adams, R.N. (1972c) Central nervous system effects of 6-aminodopamine and 6-hydroxydopamine.Brain Res. 45, 635–637.PubMedCrossRefGoogle Scholar
  23. Blank, C.L., McCreery, R.L., Wightman, R.M., Chey, W., Adams, R.N., Reid, J.R. and Smissman, E.E. (1976) Intracyclization rates of 6-hydroxydopamine and 6-aminodopamine analogs under physiological conditions.J. Med. Chem. 19, 178–180.PubMedCrossRefGoogle Scholar
  24. Bloomquist, J., King, E., Wright, A., Mytilineou, C, Kimura, K., Castagnoli, K. and Castagnoli Jr., N.) (1994) 1-Methyl-4-phenyl-pyridinium-like neurotoxicity of a pyridinium metabolite derived fromhaloperidol: Cell culture and neurotransmitter uptakestudies.J. Pharmacol. Exp. Ther. 270, 822–830.PubMedGoogle Scholar
  25. Borchardt, R.T., Burgess, S.K., Reid, J.R., Liang, Y.O. and Adams, R.N. (1977) Effects of 2-and/or 5-methylated analogues of 6-hydroxydopamine on norepinephrine- and dopamine-containing neurons.Mol. Pharmacol. 13, 805–818.Google Scholar
  26. Bredt, D.S. and Snyder, S.H. (1989) Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum.Proc. Natl. Acad. Sci. USA 86, 9030–9033.PubMedCrossRefGoogle Scholar
  27. Brown, D.E., McGuirl, M.A., Dooley, D.M., Janes, S.M., Mu, D. and Klinman, J.P. (1991) The organic functional group in copper-containing amine oxidases. Resonance Raman spectra are consistent with the presence of topa quinone (6-hydroxydopa quinone) in the active site.J. Biol. Chem. 266, 4049–4051.PubMedGoogle Scholar
  28. Buck, S.H. and Burks, T.F. (1986) The neuropharmacology of capsaicin: A review of some recent observations.Pharmacol. Rev. 38, 179–226.PubMedGoogle Scholar
  29. Burns, R.S., Chiueh, C.C., Markey, S.P., Ebert, M.H., Jacobowitz, D.M. and Kopin, I.J. (1983) A primate model of parkinsonism: Selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.Proc. Natl. Acad. Sci. USA 80, 4546–4550.PubMedCrossRefGoogle Scholar
  30. Cadet, J.L., Ladenheim, B., Baum, I., Carlson, E. and Epstein, C. (1994) CuZn-superoxide dismutase (CuZnSOD) transgenic mice show resistance to the lethal effects of methylenedioxy-amphetamine (MDA) and of methylenedioxymethamphe-tamine (MDMA).Brain Res. 655, 259–262.PubMedCrossRefGoogle Scholar
  31. Cannon, W.B. and Rosenblueth, A. (1937)Autonomic Neuro-effector Systems (New York, NY: Macmillan Co.).Google Scholar
  32. Casey, D.E., Povlsen, U.J., Meidahl, B. and Gerlach, J. (1985) Neuroleptic induced-tardive dyskinesia and parkinsonism: Changes during several years of continuing treatment.Psychopharmacol. Bull. 22, 250–253.Google Scholar
  33. Castagnoli Jr., N., Chiba, K. and Trevor, A.J. (1985) Potential bioactivation pathways for the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).Life Sci. 36, 225–230.PubMedCrossRefGoogle Scholar
  34. Chan, PH. and Fishman, R.A. (1980) Transient formation of superoxide radicals in polyunsaturated fatty acid-induced brain swelling.J. Neurochem. 35, 1004–1007.PubMedCrossRefGoogle Scholar
  35. Charriaut-Marlangue, C, Aggoun-Zouaoui, D., Represa, A. and Ben-Ari, Y. (1996) Apoptotic features of selective neuronal death in ischemia, epilepsy and gp 120 toxicity.Trends Neurosci. 19, 109–114.PubMedCrossRefGoogle Scholar
  36. Cheng, A.C. and Castagnoli Jr., N. (1984) Synthesis and physicochemical and neurotoxicity studies of l-(4-substi-tuted-2,5-dihydroxyphenyl)-2-aminoethane analogues of 6-hydroxydopamine.J. Med. Chem. 27, 513–520.PubMedCrossRefGoogle Scholar
  37. Chiba, K, Trevor, A. and Castagnoli Jr., N. (1985) Active uptake of MPP+, a metabolite of MPTP, by brain synaptosomes.Biochem. Biophys. Res. Commun. 128, 1229–1232.CrossRefGoogle Scholar
  38. Chiba, K., Trevor, A. and Castagnoli Jr., N. (1984) Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase.Biochem. Biophys. Res. Commun. 120, 574–578.PubMedCrossRefGoogle Scholar
  39. Cho, A.K., Ranson, R.W., Fischer, J.B. and Kammerer, R.C. (1980) The effects of xylamine, a nitrogen mustard, on [3H]norepinephrine accumulation in rabbit aorta.J. Pharmacol. Exp. Ther. 214, 324–327.PubMedGoogle Scholar
  40. Choi, D.W., Koh, J.Y. and Peters, S. (1988) Pharmacology of glutamate neurotoxicity in cortical cell culture: Attenuation by NMDA antagonists.J. Neurosci. 8, 185–196.PubMedGoogle Scholar
  41. Clark, G.D. and Rothman, S.M. (1987) Blockade of excitatory amino acid receptors protects anoxic hippocampal slices.Neuroscience 21, 665–671.PubMedCrossRefGoogle Scholar
  42. Cohen, S. (1960) Purification of a nerve growth promoting protein from the mouse salivary gland and its neurocyto-toxic antiserum.Proc. Natl. Acad. Sci. USA 46, 302–311.PubMedCrossRefGoogle Scholar
  43. Commins, D.L., Vosmer, G., Virus, R.M., Woolveerton, W.L., Schuster, C.R. and Seiden, L.S. (1987) Biochemical and histological evidence that methylenedioxymethamphet-amine (MDMA) is toxic to neurons in the rat brain.J. Pharmacol. Exp. Ther. 241, 338–345.PubMedGoogle Scholar
  44. Connor, J. A., Wadman, W.J., Hockberger, P.E. and Wong, R.K. (1988) Sustained dendritic gradients of Ca2+ induced by excitatory amino acids in CA1 hippocampal neurons.Science 240, 649–653.PubMedCrossRefGoogle Scholar
  45. Curti, D. and Marchbanks, R.M. (1984) Kinetics of irreversible inhibition of choline transport in synaptosomes by ethylcho-line mustard aziridinium.J. Membrane Biol. 82, 259–268.CrossRefGoogle Scholar
  46. DiFiglia, M. (1990) Excitotoxic injury of the neostriatum: A model for Huntington’s disease.Trends Neurosci. 13, 286–289.PubMedCrossRefGoogle Scholar
  47. DiMonte, D.A., Wu, E.Y, Irwin, I., DeLanney, L.E. and Langston, J.W (1991) Biotransformation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in primary cultures of mouse astrocytes.J. Pharmacol. Exp. Ther. 248, 594–600.Google Scholar
  48. Dunnett, S.B., Everitt, B.J. and Robbins, T.W. (1991) The basal forebrain-cortical cholinergic system: Interpreting the functional consequences of excitotoxic lesions.Trends Neurosci. 14, 494–501.PubMedCrossRefGoogle Scholar
  49. Duval, D., Roome, N., Gauffeny, C, Nowicki, J.P. and Scatton, B. (1992) SL82.0715, an NMDA antagonist acting at the polyamine site, does not induce neurotoxic effects on rat cortical neurons.Neurosci. Lett. 137, 193–197.PubMedCrossRefGoogle Scholar
  50. Ellison, G. (1992) Continuous amphetamine and cocaine have similar neurotoxic effects in lateral habenular nucleus and fasciculus retroflexus.Brain Res. 598, 353–356.PubMedCrossRefGoogle Scholar
  51. Ellison, G. (1995) The NMDA antagonists phencyclidine, ketamine, and dizocilpine as both behavioral and anatomical models of the dementias.Brain Res. Rev. 20, 250–267.PubMedCrossRefGoogle Scholar
  52. Ellison, G. (1998) The neurotoxic effects of continuous cocaine and amphetamine in habenula. In Kostrzewa, R.M. (Ed.)Highly Selective Neurotoxins: Basic and Clinical Applications (Totowa, NJ: Humana Press), pp. 211–233.Google Scholar
  53. Ellison, G.D. and Eison, M.S. (1983) Continuous amphetamine intoxication: An animal model of the acute psychotic episode.Psychological Med. 13, 751–761.Google Scholar
  54. Ellison, G.D., Eison, M., Huberman, H. and Daniel, R (1978) Long term changes in dopaminergic innervation of caudate nucleus after continuous amphetamine administration.Science 201, 276–278.PubMedCrossRefGoogle Scholar
  55. Ellison, G.D., Nielsen, E.B. and Lyon, M. (1981) Animal models of psychosis: Hallucinatory behaviors in monkeys during the late stage of continuous amphetamine intoxication.J. Psychiatry Res. 16, 13–22.CrossRefGoogle Scholar
  56. Ellison, G. and Switzer III, R. (1994) Dissimilar patterns of degeneration in brain following four different addictive stimulants.Neuroreport 5, 17–20.CrossRefGoogle Scholar
  57. Eyles, D.W., McGrath, J.J. and Pond, S.M. (1996) Formation of pyridinium species of haloperidol in human liver and brain.Psychopharmacology (Berl.)125, 214–219.CrossRefGoogle Scholar
  58. Eyles, D.W., McLennan, H.R., Jones, A., McGrath, J.J., Stedman, T.J. and Pond, S.M. (1994) Quantitative analysis of two pyridinium metabolites of haloperidol patients with schizophrenia.Clin. Pharmacol. Ther. 56, 512–520.PubMedGoogle Scholar
  59. Fang, J. and Yu, P.H. (1995) Effect of haloperidol and its metabolites on dopamine and noradrenaline uptake in rat brain slices.Psychopharmacology (Berl.)121, 379–384.CrossRefGoogle Scholar
  60. Farkas-Szallasi, T., Lundberg, J.M., Wiesenfeld-Hallin, Z. and Szallasi, A. (1995) Increased levels of GMAP, VIP and nitric oxide synthase, and their mRNAs, in lumbar dorsal root ganglia of the rat following systemic resiniferatoxin treatment.Neuroreport 6, 2230–2234.PubMedCrossRefGoogle Scholar
  61. Ferrante, R.J., Kowall, N.W., Beal, M.F., Richardson Jr., E.P., Bird, E.D. and Martin, J.B. (1985) Selective sparing of a class of striatal neurons in Huntington’s disease.Science 230, 561–563.PubMedCrossRefGoogle Scholar
  62. Fischer, J.B. and Cho, A.K. (1982) Inhibition of [3norepinephrine uptake in organ cultured rat superior cervical ganglia by xylamine.J. Pharmacol. Exp. Ther. 220, 115–119.PubMedGoogle Scholar
  63. Fisher, A. and Hanin, I. (1980) Minireview: Choline analogs as potential tools in developing selective animal models of central cholinergic hypofunction.Life Sci. 27, 1615–1643.PubMedCrossRefGoogle Scholar
  64. Fix, A.S., Ross, J.F., Statzel, S.R. and Switzer, R.C. (1996) Integrated evaluation of central nervous system lesions: Stains for neurons, astrocytes, and microglia reveal the spatial and temporal features of MK-801-induced neuronal necrosis in the rat cerebral cortex.Toxicol. Pathol. 24, 291–304.PubMedCrossRefGoogle Scholar
  65. Fix, A.S., Wozniak, D.F., Truex, L.L., McEwen, M., Miller, J.P. and Olney, J.W. (1995) Quantitative analysis of factors influencing neuronal necrosis induced by MK-801 in the rat posterior cingulate/retrosplenial cortex.Brain Res. 696, 194–204.PubMedCrossRefGoogle Scholar
  66. Fritschy, J.M., Geffard, M. and Grzanna, R. (1990) The response of noradrenergic axons to systemically administered DSP-4 in the rat: An immunohistochemical study using antibodies to noradrenaline and dopamine-ß-hydroxylase.J. Chem. Neuroanat. 3, 309–323.PubMedGoogle Scholar
  67. Fuller, R. and Hemrick-Luecke, S. (1980) Long-lasting depletion of striatal dopamine by a single injection of amphetamine in iprindole-treated rats.Science 209, 305–306.PubMedCrossRefGoogle Scholar
  68. Fuller, R., Hemrick-Luecke, S. and Ornstein, P. (1992) Protection against amphetamine-induced neurotoxicity toward striatal dopamine neurons in rodents by LY274614, an excitatory amino acid antagonist.Neuropharmacology 31, 1027–1032.PubMedCrossRefGoogle Scholar
  69. Futscher, B.W., Pieper, R.O., Barnes, D.M., Hanin, I. and Erickson, L.C. (1992) DNA-damaging and transcription terminating lesions induced by AF64 Ain vitro.J. Neurochem. 58, 1504–1509.PubMedCrossRefGoogle Scholar
  70. Ghribi, O., Callebert, J., Plotkine, M. and Boulu, R.G. (1994) Competitive NMDA receptor blockers reduce striatal glutamate accumulation in ischaemia.Neuroreport 5, 1253–1255.PubMedCrossRefGoogle Scholar
  71. Ghribi, O., Callebert, J., Verrecchia, C, Plotkine, M. and Boulu, R.G. (1995) Blockers of NMDA-operated channels decrease glutamate and aspartate extracellular accumulation in striatum during forebrain ischaemia in rats.Pundam. Clin. Pharmacol. 9, 141–146.Google Scholar
  72. Graham, D.G. (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones.Mol. Pharmacol. 14, 633–643.PubMedGoogle Scholar
  73. Graham, D.G., Tiffany, S.M., Bell Jr., W.R. and Gutknecht, W.R. (1978) Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopa-mine, and related compounds toward CI300 neuroblastoma cellsin vitro.Mol. Pharmacol. 14, 644–653.PubMedGoogle Scholar
  74. Greenaway, F.T., O’Gara, C.Y., Marchena, J.M., Poku, J.W., Urtiaga, J.G. and Zou, Y. (1991) EPR studies of spin-labeled bovine plasma amine oxidase: The nature of the substrate-binding site.Arch. Biochem. Biophys. 285, 291–296.PubMedCrossRefGoogle Scholar
  75. Grzanna, R., Berger, U., Fritschy, J.M. and Geffard, M. (1989) The acute action of DSP-4 on central norepinephrine axons: Biochemical and immunohistochemical evidence for differential effects.J. Histochem. Cytochem. 37, 1435–1442.PubMedGoogle Scholar
  76. Gulyaeva, N.V., Lazareva, N.A., Libe, M.L., Mitrokhina, M.V., Yu, M. and Walsh, T.J. (1996) Oxidative stress in the brain following intraventricular administration of ethylcholine aziridinium (AF64A).Brain Res. 726, 174–180.PubMedCrossRefGoogle Scholar
  77. Gunne, L.M., Haggerstrom, J.E. and Sjoquist, B. (1984) Association with persistent neuroleptic-induced dyskinesias of regional changes in brain GABA synthesis.Nature 309, 347–349.PubMedCrossRefGoogle Scholar
  78. Hanin, I. (1988) Role of the aziridinium moiety in thein vivo cholinotoxicity of ethylcholine aziridinium ion (AF64A).J. Neurosci. Methods 23, 107–113.PubMedCrossRefGoogle Scholar
  79. Hanin, I. (1996) The AF64A model of cholinergic hypofunction: An update.Life Sci. 58, 1955–1964.PubMedCrossRefGoogle Scholar
  80. Hanson, G.R., Matsuda, L. and Gibb, J.W. (1987) Effects of cocaine on methamphetamine-induced neurochemical changes: Characterization of cocaine as a monoamine uptake blocker.J. Pharmacol. Exp. Ther. 242, 507–513.PubMedGoogle Scholar
  81. Hargreaves, R.J., Rigby, M., Smith, D. and Hill, R.G. (1993) Lack of effect of L-687,414 ((+)-cis-4-methyl-HA-966), an NMDA receptor antagonist acting at the glycine site, on cerebral glucose metabolism and cortical neuronal morphology.Br. J. Pharmacol. 110, 36–42.PubMedGoogle Scholar
  82. Harvey, J. A. and McMaster, S.E. (1975) Fenfluramine: Evidence for a neurotoxic action on a long-term depletion of serotonin.Psychopharmacol. Commun. 1, 217–228.PubMedGoogle Scholar
  83. Heikkila, R. and Cohen, G. (1971) A mechanism for toxic effects of 6-hydroxydopamine.Science 172, 1257–1258.PubMedCrossRefGoogle Scholar
  84. Heikkila, R. and Cohen, G. (1972) Further studies on the generation of hydrogen peroxide by 6-hydroxydopamine: Potentiation by ascorbic acid.Mol. Pharmacol. 8, 241–248.PubMedGoogle Scholar
  85. Heikkila, R.E. and Cohen, G. (1973) 6-Hydroxydopamine: Evidence for superoxide radical as an oxidative intermediate.Science 181, 456–457.PubMedCrossRefGoogle Scholar
  86. Heikkila, R.E., Manzino, L., Cabbat, F.S. and Duvoisin, R.C. (1984) Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by monoamine oxidase inhibitors.Nature 311, 467–469.PubMedCrossRefGoogle Scholar
  87. Ho, B.T., Meyer, A.L. and Taylor, D. (1973) Selective depletion of dopamine following O-methylation of 6-hydroxydopa-mine.Res. Commun. Chem. Pathol. Pharmacol. 6, 47–56.PubMedGoogle Scholar
  88. Holzer, P. (1991) Capsaicin: Cellular targets, mechanisms of action, and selectivity for thin sensory neurons.Pharmacol. Rev. 43, 144–201.Google Scholar
  89. Hortnagl, H., Potter, P.E., Happe, K., Goldstein, S., Leventer, S., Wulfert, E. and Hanin, I. (1998) Role of the aziridinium moiety in thein vivo cholinotoxicity of ethylcholine aziridinium ion (AF64A).J. Neurosci. Methods 23, 107–113.CrossRefGoogle Scholar
  90. Hotchkiss, A.J. and Gibb, J.W. (1980) Long-term effects of multiple doses of methamphetamine on tryptophan hydroxylase and tyrosine hydroxylase activity in rat brain.J. Pharmacol. Exp. Ther. 214, 257–262.PubMedGoogle Scholar
  91. Igarashi, K., Kasuya, E, Fukui, M., Usuki, E. and Castagnoli Jr., N. (1995) Studies on the metabolism of haloperidol (HP): The role of CYP3A in the production of the neurotoxic pyridinium metabolite HPP+ found in rat brain following IP administration of HP.Life Sci. 57, 2439–2446.PubMedCrossRefGoogle Scholar
  92. Ito, S., Kato, T. and Fujita, K. (1988) Covalent binding of catechols to proteins through the sulphydryl group.Biochem. Pharmacol. 37, 1707–1710.PubMedCrossRefGoogle Scholar
  93. Jacobowitz, D. and Kostrzewa, R. (1971) Selective action of 6-hydroxydopa on noradrenergic terminals: Mapping of preterminal axons of the brain.Life Sci. 10, 1329–1341.CrossRefGoogle Scholar
  94. Jancso, G., Kiraly, E. and Jancso-Gabor, A. (1978) Pharmacologically induced selective degeneration of chemosensitive sensory neurones.Nature 270, 741–743.CrossRefGoogle Scholar
  95. Jancso, G., Kiraly, E., Joo, E, Such, G. and Nagy, A. (1985) Selective degeneration by capsaicin of a subpopulation of primary sensory neurons in the adult rat.Neurosci. Lett. 59, 209–214.PubMedCrossRefGoogle Scholar
  96. Janes, S., Mu, D., Wemmer, D., Smith, A.J., Kaur, S., Maltby, D. and Burlingame, A.L. (1990) A new redox cofactor in eukar-yotic enzymes: 6-Hydroxydopa at the active site of bovine serum amine oxidase.Science 248, 981–987.PubMedCrossRefGoogle Scholar
  97. Jauch, D., Urbanska, E.M., Guidetti, P., Bird, E.D., Vonsattel, J.P., Whetsell Jr., W.O. and Schwarcz, R. (1995) Dysfunction of brain kynurenic acid metabolism in Huntington’s disease: Focus on kynurenine aminotransferases.J. Neurol. Sci. 130, 39–47.PubMedCrossRefGoogle Scholar
  98. Javitch, J. A., D’Amato, R.J., Strittmatter, S.M. and Snyder, S.H. (1985) Parkinsonism-mducing neurotoxin, N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity.Proc. Natl. Acad. Sci. USA 82, 2173–2177.PubMedCrossRefGoogle Scholar
  99. Javitt, D.C. and Zukin, S.R. (1991) Recent advances in the phencyclidine model of schizophrenia.Am. J. Psychiatr. 148, 1301–1308.PubMedGoogle Scholar
  100. Jonsson, G., Hallman, H., Ponzio, F. and Ross, S. (1981) DSP4 (N-(2-chloroethyl)-N-ethyl~2-bromobenzylamine) — A useful denervation tool for central and peripheral noradrenaline neurons.Eur. J. Pharmacol. 72, 173–188.PubMedCrossRefGoogle Scholar
  101. Kalaria, R.N., Mitchell, M.J. and Harik, S.I. (1987) Correlation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity with blood-brain barrier monoamine oxidase activity.Proc. Natl. Acad. Sci. USA 84, 3521–3525.PubMedCrossRefGoogle Scholar
  102. Keys, A. and Ellison, G. (1994) Continuous cocaine induces persisting alterations in dopamine overflow in caudate following perfusion with a Dl agonist.J. Neural. Trans., Gen. Sect. 97, 225–233.CrossRefGoogle Scholar
  103. Kleven, M.S. and Seiden, L.S. (1989) D-, L- and DL-fenfluramine cause long-lasting depletions of serotonin in rat brain.Brain Res. 505, 351–353.PubMedCrossRefGoogle Scholar
  104. Kostrzewa, R.M. (1998) 6-Hydroxydopa, a catecholamine neurotoxin and endogenous excitotoxin at non-NMDA receptors. In Kostrzewa, R.M. (Ed.),Highly Selective Neurotoxins: Basic and Clinical Applications (Totowa, NJ: Humana Press) pp. 109–129.Google Scholar
  105. Kostrzewa, R.M. and Harper, J.W. (1974) Effects of 6-hydroxydopa on catecholamine-containing neurons in brains of newborn rats.Brain Res. 69, 174–181.PubMedCrossRefGoogle Scholar
  106. Kostrzewa, R.M. and Jacobowitz, D. (1973) Acute effects of 6-hydroxydopa on central monoaminergic neurons.Eur. J. Pharmacol. 21, 70–80.PubMedCrossRefGoogle Scholar
  107. Kreuger, C.A. and Cook, D.A. (1975) Synthesis and adrenergic blocking properties of some alkylating analogs of bretylium.Arch. Int. Pharmacodyn. Ther. 218, 96–115.Google Scholar
  108. Langston, J.W. and Ballard, P.A. (1984) Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): Implications for treatment and the pathogenesis of Parkinson’s disease.Can J. Neurol. Sci. 11, 160–165.PubMedGoogle Scholar
  109. Langston, J.W., Ballard, P.A., Tetrud, J.W. and Irwin, I. (1983) Chronic parkinsonism in humans is due to a product of meperidine analog synthesis.Science 219, 979–980.PubMedCrossRefGoogle Scholar
  110. Langston, J.W., Irwin, I., Langston, E.B. and Forno, L.S. (1984) Pargyline prevents MPTP-induced parkinsonism in primates.Science 225, 1480–1482.PubMedCrossRefGoogle Scholar
  111. Leventer, S.M., Wulfert, E. and Hanin, I. (1987) Time course of ethylcholine aziridinium ion (AF64A)-induced cholinotoxicityin vivo.Neuropharmacology 26, 361–365.PubMedCrossRefGoogle Scholar
  112. Levi-Montalcini, R. (1966) The nerve growth factor: Its mode of action on sensory and sympathetic nerve cells.Harvey Lect. 60, 217–259.PubMedGoogle Scholar
  113. Levi-Montalcini, R. (1987) The nerve growth factor 35 years later.Science 237, 1154–1162.PubMedCrossRefGoogle Scholar
  114. Levi-Montalcini, R. and Angeletti, P.U. (1966) Second symposium on catecholamines. Modification of sympathetic function. Immunosympathectomy.Pharmacol. Rev. 18, 619–628.PubMedGoogle Scholar
  115. Lew, R., Malberg, J.E., Ricaurte, G.A. and Seiden, L.S. (1998) Evidence for and mechanism of action of neurotoxicity of amphetamine related compounds. In Kostrzewa, R.M. (Ed.),Highly Selective Neurotoxins: Basic and Clinical Applications (Totowa, NJ: Humana Press), pp. 235–268.Google Scholar
  116. Lew, R., Sabol, K.E., Chou, C, Vosmer, G.L., Richards, J. and Seiden, L.S. (1996) Methylenedioxymethamphetamine (MDMA)-induced serotonin deficits are followed by partial recovery over a 52 week period. Part II: Radioligand binding and autoradiographic studies.J. Pharmacol. Exp. Ther. 276, 855–865.PubMedGoogle Scholar
  117. Lew, R., Weisenberg, B., Vosmer, G. and Seiden, L.S. (1997) Combined phentermine/fenfluramine administration enhances depletion of serotonin from central terminal fields.Synapse 26, 36–45.PubMedCrossRefGoogle Scholar
  118. Lewin, R. (1984) Trail of ironies to Parkinson’s disease.Science 224, 1083–1085.PubMedCrossRefGoogle Scholar
  119. Lipton, S.A. and Rosenberg, P.A. (1994) Excitatory amino acids as a final common pathway for neurologic disorders.N. Engl. J. Med. 330, 613–622.PubMedCrossRefGoogle Scholar
  120. Liu, L., Wang, Y. and Simon, S.A. (1996) Capsaicin activated currents in rat dorsal root ganglion cells.Pain 64, 191–195.PubMedCrossRefGoogle Scholar
  121. Liu, Y., Roghani, A. and Edwards, R.H. (1992) Gene transfer of a reserpine-sensitive mechanism of resistance to N-methyl-4-phenylpyridinium.Proc. Natl. Acad. Sci. USA 89, 9074–9078.PubMedCrossRefGoogle Scholar
  122. Lorez, H. (1981) Fluorescence histochemistry indicates damage of striatal dopamine nerve terminals in rats after multiple doses of methamphetamine.Life Sci. 28, 911–916.PubMedCrossRefGoogle Scholar
  123. Lucas, D.R. and Newhouse, J.P. (1957) The toxic effect of sodium L-glutamate on the inner layers of the retina.Arch. Ophthalmol. 58, 193–201.Google Scholar
  124. Lundstrom, J., Ong, H., Daly, J. and Creveling, C.R. (1973) Isomers of 2,4,5-trihydroxyphenethylamine (6-hydroxydo-pamine). Long-term effects of the accumulation of (3H)-norepinephrine in mouse heartin vivo.Mol. Pharmacol. 9, 505–513.PubMedGoogle Scholar
  125. Ma, S., Lin, L., Rhagavan, R., Cohenour, R, Lin, P.Y.T., Bennet, J., Lewis, R.J., Kostrzewa, R., Lehr, R.E. and Blank, C.L. (1995)In vivo andin vitro studies on the neurotoxic potential of 6-hydroxydopamine analogs.J. Med. Chem. 38, 4087–4097.PubMedCrossRefGoogle Scholar
  126. Mahadik, S.P., Laev, H., Korenovsk, A. and Karpiak, S.E. (1988) Haloperidol alters rat CNS cholinergic system: Enzymatic and morphological analyses.Biol. Psychiatry 24, 199–217.PubMedCrossRefGoogle Scholar
  127. Marek, G.J., Vosmer, G. and Seiden, L.S. (1990) Dopamine uptake inhibitors block long-term neurotoxic effects of methamphetamine upon dopaminergic neurons.Brain Res. 513, 274–279.PubMedCrossRefGoogle Scholar
  128. Meshul, C.K. and Casey, D.E. (1989) Regional, reversible ultrastructural changes in rat brain with chronic neuroleptic treatment.Brain Res. 489, 338–346.PubMedCrossRefGoogle Scholar
  129. Meshul, C.K., Stallbaumer, R.K., Taylor, B. and Janowsky, A. (1994) Haloperidol-induced morphological changes in striatum are associated with glutamate synapses.Brain Res. 648, 181–195.PubMedCrossRefGoogle Scholar
  130. Miller, R. and Chouinard, G. (1993) Loss of striatal cholinergic neurons as a basis for tardive dyskinesia and L-dopa-induced dyskinesias, neuroleptic-induced supersensitivity psychosis and refractory schizophrenia.Biol. sychiatry 4, 13–738.Google Scholar
  131. Mizuno, Y, Saito, T. and Sone, N. (1987a) Inhibition of ATP ynthesis by 1-methyl-4-phenylpyridinium ion (MPP+) in isolated mitochondria from mouse brains.Neurosci. Lett. 81, 204–208.PubMedCrossRefGoogle Scholar
  132. Mizuno, Y, Suzuki, K., Sone, N. and Saitoh, T. (1987b) Inhibition of ATP synthesis by 1-methyl-4-phenylpyridinium ion (MPP+) in isolated mitochondria from mouse brains.Neurosci. Lett. 81, 204–208.PubMedCrossRefGoogle Scholar
  133. Mody, I. and MacDonald, J.F. (1995) NMDA receptor-dependent excitotoxicity: The role of intracellular Ca2+ release.Trends Pharmacol. Sci. 16, 356–359.PubMedCrossRefGoogle Scholar
  134. Molliver, D.C. and Molliver, M.E. (1990) Anatomic evidence for a neurotoxic effect of (+/-)-fenfluramine upon serotonergic projections in the rat.Brain Res. 511, 165–168.PubMedCrossRefGoogle Scholar
  135. Murray, T.K., Williams, J.L., Misra, A., Colado, M.I. and Green, A.R. (1996) The spin trap reagent PBN attenuates degeneration of 5-HT neurons in rat brain induced by p-chloroamphetamine but not fenfluramine.Neuropharmacology 35, 1615–1620.PubMedCrossRefGoogle Scholar
  136. Nwanze, E. and Jonsson, G. (1981) Amphetamine neurotoxicity on dopamine nerve terminals in the caudate nucleus of mice.Neurosci. Lett. 26, 163–168.PubMedCrossRefGoogle Scholar
  137. Olney, J.W. (1969) Brain lesions, obesity and other disturbances in mice treated with monosodium glutamate.Science 164, 719–721.PubMedCrossRefGoogle Scholar
  138. Olney, J.W. (1981) Kainic acid and other excitotoxins: A comparative analysis. In DiChiara, G. and Gessa, G.J. (Eds.),Glutamate as Neurotransmitter (New York: Raven Press), pp. 375–384.Google Scholar
  139. Olney, J.W, Ho, O.L. and Rhee, V. (1971) Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system.Exp. Brain Res. 14, 67–76.CrossRefGoogle Scholar
  140. Olney, J.W., Labruyere, J. and Price, M.T. (1989) Pathological changes induced in cerebrocortical neurons by phencycli-dine and related drugs.Science 244, 1360–1362.PubMedCrossRefGoogle Scholar
  141. Olney, J.W., Labruyere, J., Wang, G., Wozniak, D.E, Price, M.T. and Sesma, M.A. (1991) NMDA antagonist neurotoxicity: Mechanism and prevention.Science 254, 1515–1518.PubMedCrossRefGoogle Scholar
  142. Olney, J.W. and Sharpe, L.G. (1969) Brain lesions in an infant rhesus monkey treated with monosodium glutamate.Science 166, 386–388.PubMedCrossRefGoogle Scholar
  143. Olney, J.W, Zorumski, C.E, Stewart, G.R., Price, M.T, Wang, G.J. and Labruyere, J. (1990) Excitotoxicity of L-dopa and 6-OH-dopa: Implications for Parkinson’s and Huntington’s diseases.Exp. Neurol. 108, 269–272.PubMedCrossRefGoogle Scholar
  144. Ong, H.H., Creveling, C.R. and Daly, J.W. (1969) The synthesis of 2,4,5-trihydroxyphenylalanine (6-hydroxydopa). A centrally active norepinephrine-depleting agent.J. Med. Chem. 12, 458–462.PubMedCrossRefGoogle Scholar
  145. Perl, T.M., Bedard, L., Kosatsky, T, Hockin, J.C., Todd, E.C.D. and Remis, R.S. (1990) An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid.N. Engl. J. Med. 322, 1775–1780.PubMedGoogle Scholar
  146. Perry, K.W, Kostrzewa, R.M. and Fuller, R.W (1995) Persistence of long-lasting serotonin depletion by p-chloroamphe-tamine in rat brain after 6-hydroxydopamine lesioning of dopamine neurons.Biochem. Pharmacol. 50, 1305–1307.PubMedCrossRefGoogle Scholar
  147. Porter, C.C., Totaro, J.A. and Stone, C.A. (1963) Effect of 6-hydroxydopamine and some other compounds on the concentration of norepinephrine in the hearts of mice.J. Pharmacol. Exp. Ther. 140, 308–316.PubMedGoogle Scholar
  148. Potter, P.E., Tedford, C.E., Kindel, G.H. and Hanin, I. (1987) Inhibition of high affinity choline transport attenuates both cholinergic and noncholinergic effects of ethylcholine aziridinium (AF64A).Brain Res. 13, 238–244.Google Scholar
  149. Pranzatelli, M.R. (1998) Use of 5,6- and 5,7-Dihydroxytrypta-mine to lesion serotonin neurons. In Kostrzewa, R.M. (Ed.),Highly Selective Neurotoxins: Basic and Clinical Applications (Totowa, NJ: Humana Press), pp. 293–311.Google Scholar
  150. Pulsinelli, W., Sarokin, A. and Bucham, A. (1993) Antagonism of the NMDA and non-NMDA receptors in global versus focal brain ischemia.Prog. Brain Res. 96, 125–135.PubMedCrossRefGoogle Scholar
  151. Ramsay, PR., Krueger, M.J., Youngster, S.K., Gluck, M.R., Casida, J.E. and Singer, T.P. (1991) Interaction of 1-methyl-4-phenylpyridinium ion (MPP+) and its analogs with the rotenone/piericidin binding site of NADH dehydrogenase.J. Neurochem. 56, 1184–1190.PubMedCrossRefGoogle Scholar
  152. Reinhard, J.E, Daniels, A.J. and Painter, G.R. (1990) Carrier-independent entry of 1-methyl-4-phenylpyridinium (MPP+) into adrenal chromaffin cells as a consequence of charge derealization.Biochem. Biophys. Res. Commun. 168, 1143–1148.PubMedCrossRefGoogle Scholar
  153. Reinhard Jr., J.E, Daniels, A.J. and Viveros, O.H. (1988) Potentiation by reserpine and tetrabenazine of brain catecholamine depletions by MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) in the mouse: Evidence for subcellular sequestration as basis for cellular resistance to the toxicant.Neurosci. Lett. 90, 349–353.PubMedCrossRefGoogle Scholar
  154. Reinhard Jr., J.F., Diliberto Jr., E.J., Viveros, O.H. and Daniels, A.J. (1987) Subcellular compartmentalization of 1-methyl-4-phenypyridinium with catecholamines in adrenal medullary chromaffin vesicles may explain the lack of toxicity to adrenal chromaffin cells.Proc. Natl. Acad. Sci. USA 84, 8160–8164.PubMedCrossRefGoogle Scholar
  155. Reynolds, G.P., Brown, J.E., McCall, J.E. and McKay, A.V.P. (1992) Dopamine receptor abnormalities in the striatum and pallidum in tardive dyskinesia: A post mortem study.J. Neural. Transm. 87, 225–230.CrossRefGoogle Scholar
  156. Riachi, N.J., Arora, P.K., Sayre, L.M. and Harik, S.I. (1988) Potent neurotoxic fluorinated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine analogs as potential probes in models of Parkinson’s disease.J. Neurochem. 50, 1319–1321.PubMedCrossRefGoogle Scholar
  157. Ricaurte, G., Bryan, G., Strauss, L., Seiden, L. and Schuster, C. (1985) Hallucinogenic amphetamine selectively destroys brain serotonin nerve terminals.Science 229, 986–988.PubMedCrossRefGoogle Scholar
  158. Ricaurte, G.A., Guillery, R.W., Seiden, L.S., Schuster, C.R. and Moore, R.Y. (1982) Dopamine nerve terminal degeneration produced by high doses of methylamphetamine in the rat brain.Brain Res. 235, 93–103.PubMedCrossRefGoogle Scholar
  159. Ricaurte, G.A., Schuster, C.R. and Seiden, L.S. (1980) Long-term effects of repeated methylamphetamine administration on dopamine and serotonin neurons in the rat brain: A regional study.Brain Res. 193, 153–163.PubMedCrossRefGoogle Scholar
  160. Roberts, R.C., Gaither, L.A., Gao, X.M., Kashyap, S.M. and Tamminga, C.A. (1995) Ultrastructural correlates of haloperidol-induced oral dyskinesias in rat striatum.Synapse 20, 234–243.PubMedCrossRefGoogle Scholar
  161. Rollema, H., Booth, R.G. and Castagnoli Jr., N. (1988)In vivo dopaminergic neurotoxicity of the 2-ß-methylcarbolinium ion, a potential endogenous MPP+ analog.Eur. J. Pharmacol. 153, 131–134.PubMedCrossRefGoogle Scholar
  162. Rollema, H., Skolnik, M., D’Engelbronner, J., Igarashi, K., Usuki, E. and Castagnoli Jr., N. (1994) MPP-like neurotoxicity of a pyridinium metabolite derived from haloperidol:In vivo microdialysis andin vitro mitochondrial studies.J. Pharmacol. Exp. Ther. 268, 380–387.PubMedGoogle Scholar
  163. Rosenberg, P. A., Loring, R., Xie, Y., Zaleskas, V. and Aizemnan, E. (1991) 2,4,5-Trihydroxyphenylalanine in solution forms a non-N-methyl-D-aspartate glutamatergic agonist and neurotoxin.Proc. Natl. Acad. Sci. USA 88, 4865–4869.PubMedCrossRefGoogle Scholar
  164. Ross, S.B. (1976) Long-term effects of N-2-chloroethyl-N-ethyl-2-bromobenzylamine hydrochloride on noradrenergic neurones in the rat brain and heart.Br. J. Pharmacol. 58, 521–527.PubMedGoogle Scholar
  165. Ross, S.B. and Renyi, A.L. (1976) On the long-lasting inhibitory effect ofN-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) on the active uptake of noradrenaline.J. Pharm. Pharmacol. 28, 458–459.PubMedGoogle Scholar
  166. Rossner, S., Schliebs, R., Perez-Polo, J.R., Wiley, R.G. and Bigi, V. (1995) Differential changes in cholinergic markers from selected brain regions after specific immunolesion of the rat cholinergic basal forebrain system.J. Neurosci. Res. 40, 31–43.PubMedCrossRefGoogle Scholar
  167. Rothman, S.M. and Olney, J.W. (1986) Glutamate and the pathophysiology of hypoxic-ischemic brain damage.Ann. Neurol. 19, 105–111.PubMedCrossRefGoogle Scholar
  168. Ryan, L., Martone, M., Linder, J. and Groves, P. (1990) Histological and ultrastructural evidence that d-amphetamine causes degeneration in neostriatum and frontal cortex of rats.Brain Res. 518, 67–77.PubMedCrossRefGoogle Scholar
  169. Ryan, L.J., Martone, M., Linder, J. and Groves, P. (1988) Cocaine, in contrast to d-amphetamine, does not cause axo-nal terminal degeneration in neostriatum and agranular frontal cortex of Long-Evans rats.Life Sci. 43, 1403–1409.PubMedCrossRefGoogle Scholar
  170. Rylett, R.J. and Colhoun, E.H. (1984) An evaluation of irreversible inhibition of synaptosomal high-affinity choline transport by choline mustard aziridinium ion.J. Neurochem. 43, 787–794.PubMedCrossRefGoogle Scholar
  171. Sachs, C. and Jonsson, G. (1972a) Degeneration of central and peripheral noradrenaline neurons produced by 6-hydroxy-DOPA.J. Neurochem. 19, 1561–1575.PubMedCrossRefGoogle Scholar
  172. Sachs, C. and Jonsson, G. (1972b) Selective 6-hydroxy-DOPA induced degeneration of central and peripheral noradrenaline neurons.Brain Res. 40, 563–568.PubMedCrossRefGoogle Scholar
  173. Sanchez-Prieto, J., Budd, D.C., Herrero, I., Vazquez, E. and Nicholls, D.G. (1996) Presynaptic receptors and control of glutamate exocytosis.Trends Neurosci. 19, 235–239.PubMedCrossRefGoogle Scholar
  174. Sandberg, K, Schnaar, R.L., McKinney, M., Hanin, I., Fisher, A. and Coyle, J.T. (1985) AF64A: An active site directed irreversible inhibitor of choline acetyltransferase.J. Neurochem. 44, 439–445.PubMedCrossRefGoogle Scholar
  175. Sanders-Bush, E., Bushing, J.A. and Sulser, F. (1975) Long-term effects of p-chloroamphetamine and related drugs on central serotonergic mechanisms.J. Pharmacol. Exp. Ther. 192, 33–41.PubMedGoogle Scholar
  176. Sanders-Bush, E., Bushing, J.A. and Sulser, F. (1972) Long-term effects of p-chloroamphetamine on tryptophan hydroxylase activity and on the levels of 5-hydroxytryptamine and 5-hydroxyindole acetic acid in brain.Eur. J. Pharmacol. 20, 385–388.PubMedCrossRefGoogle Scholar
  177. Schenk, D., Barbour, R., Dunn, W., Gordon, G., Grajeda, H., Guido, T., Hu, K., Huang, J., Johnson-Wood, K., Khan, K., Kholodenko, D., Lee, M., Liao, Z., Lieberburg, I., Motter, R., Mutter, L., Soriano, F., Shopp, G., Vasquez, N., Vandevert, C, Walker, S., Wogulis, M., Yednock, T., Games, D. and Seubert, P. (1999) Immunization with amyloid-ß attenuates Alzheimer-disease-like pathology in the PDAPP mouse.Nature 400, 173–177.PubMedCrossRefGoogle Scholar
  178. Schliebs, R. (1998) Basal forebrain cholinergic dysfunction-experimental approaches and the diseased brain.Intl. J. Dev. Neurosci. 16, 591–593.CrossRefGoogle Scholar
  179. Schmidt, C.J. and Taylor, V.L. (1987) Depression of rat brain tryptophan hydroxylase activity following the acute administration of methylenedioxymethamphetamine.Biochem. Pharmacol. 36, 4095–4102.PubMedCrossRefGoogle Scholar
  180. Schmidt, C.J., Wu, L. and Lovenberg, W. (1986) Methylene-dioxymethamphetamme: A potentially neurotoxic amphetamine analogue.Eur. J. Pharmacol. 124, 175–178.PubMedCrossRefGoogle Scholar
  181. Schmidt, D.E., Ebert, M.H., Lynn, J.C. and Whetsell Jr., W.O. (1997) Attenuation of 1-methyl-4-phenylpyridinium (MPP+) neurotoxicity by deprenyl in organotypic canine substantia nigra cultures.J. Neural. Transm. 104, 875–885.PubMedCrossRefGoogle Scholar
  182. Schmidt, C.J., Ritter, J.K., Sonsalla, P.K., Hanson, G.R. and Gibb, J.W. (1985) Role of dopamine in the neurotoxic effects of methamphetamine.J. Pharmacol. Exp. Ther. 233, 539–544.PubMedGoogle Scholar
  183. Seiden, L.S., Fischman, M.W. and Schuster, C.R. (1976) Long-term methamphetamine induced changes in brain catecholamines in tolerant rhesus monkeys.Drug Alcohol Depend. 1, 215–219.PubMedCrossRefGoogle Scholar
  184. Seiden, L.S. and Ricaurte, G. (1987) Neurotoxicity of methamphetamine and related drugs. In Meltzer, H.Y. (Ed.),Psychopharmacology: The Third Generation of Progress (New York: Raven), pp. 359–365.Google Scholar
  185. Seiden, L.S. and Vosmer, G. (1984) Formation of 6-hydroxy-dopamine in caudate nucleus of the rat brain after a single large dose of methylamphetamine.Pharmacol. Biochem. Behav. 21, 29–31.PubMedCrossRefGoogle Scholar
  186. Sharp, R.R., Jasper, P., Hall, J., Noble, L. and Sagar, S.M. (1991) MK-801 and ketamine induce heat shock protein HSP72 in injured neurons in posterior cingulate and retrosplenial cortex.Ann. Neurol. 30, 801–809.PubMedCrossRefGoogle Scholar
  187. Siman, R. and Noszek, J.C. (1988) Excitatory amino acids activate calpain I and induce structural protein breakdownin vivo.Neuron 1, 279–287.PubMedCrossRefGoogle Scholar
  188. Singer, T.P., Salach, J.L., Castagnoli Jr., N. and Trevor, A.J. (1986) Interactions of the neurotoxic amine 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine with monoamine oxidases.Biochem. J. 235, 785–789.PubMedGoogle Scholar
  189. Sonsalla, P., Nicklas, W. and Heikkila, R. (1989) Role for excitatory amino acids in methamphetamine-induced nigro-striatal dopaminergic toxicity.Science 243, 398–400.PubMedCrossRefGoogle Scholar
  190. Spenser, P.S., Nunn, P.B., Hugon, J., Ludolph, A.C., Ross, M.S., Dwijendra, N.R. and Robertson, R.C. (1987) Guam amyotrophic lateral sclerosis-parkinsonian-dementia linked to a plant excitant neurotoxin.Science 237, 517–522.CrossRefGoogle Scholar
  191. Spenser, P.S., Roy, D.N., Ludolph, A., Hugon, J., Dwivedi, M.P and Schaumburg, H.H. (1986) Lathyrism: Evidence for role of the neuroexcitatory aminoacid BOAA.Lancet 2(8515), 1066–1067.CrossRefGoogle Scholar
  192. Springer, J.E. (1988) Nerve growth factor receptors in the central nervous system.Exp. Neurol. 102, 354–365.PubMedCrossRefGoogle Scholar
  193. Steranka, L.R. and Sanders, B.E. (1980) Long-term effects of continuous exposure to amphetamine on brain dopamine oncentration and synaptosomal uptake in mice.Eur. J. Pharmacol. 65, 439–443.PubMedCrossRefGoogle Scholar
  194. Stern-Bach, Y., Keen, J.N., Bejerano, M., Steiner-Mordoch, S., Wallach, M., Findlay, J.B.C. and Schuldiner, S. (1992) Homology of a vesicular amine transporter to a gene conferring resistance to 1-methyl-4-phenylpyridinium.Proc. Natl. Acad. Sci. USA 89, 9730–9733.PubMedCrossRefGoogle Scholar
  195. Stone, C.A., Stavorski, J.M., Ludden, C.T., Wengler, H.C., Ross, C.A., Totaro, J.A. and Porter, C.C. (1963) Comparison of some pharmacological effects of certain 6-substituted dopamine derivatives with reserpine, guanethidine and metaraminol.J. Pharmacol. Exp. Ther. 142, 147–156.PubMedGoogle Scholar
  196. Stone, D.M., Johnson, M., Hanson, G.R. and Gibb, J.W. (1988) Role of endogenous dopamine in the central serotonergic deficits induced by 3,4-methylenedioxymethamphetamine.J. Pharmacol. Exp. Ther. 247, 79–87.PubMedGoogle Scholar
  197. Subramanyam, B., Pond, S.M., Eyles, D.W., Whiteford, H.A., Fouda, H.G. and Castagnoli Jr., N. (1991a) Identification of a potentially neurotoxic pyridinium metabolite in the urine of schizophrenic patients treated with haloperidol.Biochem. Biophys. Res. Commun. 181, 573–578.PubMedCrossRefGoogle Scholar
  198. Subramanyam, B., Rollema, H., Woolf, T. and Castagnoli Jr., N. (1990) Identification of a potentially neurotoxic pyridinium metabolite of haloperidol in rats.Biochem. Biophys. Res. Commun. 166, 238–244.PubMedCrossRefGoogle Scholar
  199. Subramanyam, B., Woolf, T. and Castagnoli Jr., N. (1991b) Studies on thein vitro conversion of haloperidol to a potentially neurotoxic pyridinium metabolite.Chem. Res. Toxicol. 4, 123–128.PubMedCrossRefGoogle Scholar
  200. Szallasi, A. (1988) Toxic vanilloids. In Kostrzewa, R.M. (Ed.)Highly Selective Neurotoxins: Basic and Clinical Applications (Totowa, NJ: Humana Press), pp. 385–398.Google Scholar
  201. Szallasi, A. and Blumberg, P.M. (1999) Vanilloid (capsaicin) receptors and mechanisms.Pharmacol. Rev. 51, 159–212.PubMedGoogle Scholar
  202. Szallasi, A. and Blumberg, P.M. (1996) Vanilloid receptors: New insights enhance potential as a therapeutic target.Pain 68, 195–208.PubMedCrossRefGoogle Scholar
  203. Szolcsanyi, J., Joo, F. and Jancso-Gabor (1971) Mitochondrial changes in preoptic neurones after capsaicin desensitization of the hypothalamic thermodetectors in rats.Nature 299, 116–117.CrossRefGoogle Scholar
  204. Tabatabaie, T. and Dryhurst, G. (1992) Chemical and enzyme-mediated oxidation of the serotonergic neurotoxin 5,7-dihydroxytryptamine: Mechanistic insights.J. Med. Chem. 35, 2261–2273.PubMedCrossRefGoogle Scholar
  205. Tabatabaie, T and Dryhurst, G. (1998) Molecular mechanisms of action of 5,6- and 5,7-dihydroxytryptamine. In Kostrzewa, R.M. (Ed.),Highly Selective Neurotoxins: Basic and Clinical Applications (Totowa, NJ: Humana Press), pp. 269–291.Google Scholar
  206. Teitelbaum, J.S., Zatorre, R.J., Carpenter, S., Gendron, D., Evans, A.C., Gjedde, A. and Cashman, N.R. (1990) Neurologic sequelae of domoic acid intoxication due to the ingestion of contaminated mussels.N. Engl. J. Med. 25, 1781–1787.CrossRefGoogle Scholar
  207. Tetrud, J.W. and Langston, J.W. (1992) Tremor in MPTP-induced parkinsonism.Neurology 42, 407–410.PubMedGoogle Scholar
  208. Thoenen, H., Barde, Y.A., Edgar, D., Hatanaka, H., Otten, U. and Schwab, M. (1979) Mechanism of action and possible sites of synthesis of nerve growth factor.Progr. Brain Res. 51, 95–107.CrossRefGoogle Scholar
  209. Thoenen, H. and Tranzer, J.P. (1968) Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxydopamine.Naunyn-Schmiedeberg’s Arch. Pharmacol. Exp. Pathol. 261, 271–288.CrossRefGoogle Scholar
  210. Tranzer, J.P. and Thoenen, H. (1967) Ultramorphologische Veranderungen der sympatischen Nervendigunden der Katze nach Vorbehandlung mit 5- und 6-hydroxydopamin.Naunyn-Scmiedeberg’s Arch. Pharmacol. Exp. Pathol. 257, 343–344.CrossRefGoogle Scholar
  211. Tranzer, J.P. and Thoenen, H. (1968) An electron microscopic study of selective, acute degeneration of sympathetic nerve terminals after administration of 6-hydroxydopamine.Experientia 24, 155–156.PubMedCrossRefGoogle Scholar
  212. Tranzer, J.P. and Thoenen, H. (1973) Selective destruction of adrenergic nerve terminals by chemical analogues of 6-hydroxydopamine.Experientia 29, 314–315.PubMedCrossRefGoogle Scholar
  213. Turski, W.A., Gramsbergen, J.B., Traitler, H. and Schwarcz, R. (1989) Rat brain slices produce and liberate kynurenic acid upon exposure to L-kynurenine.J. Neurochem. 52, 1629–1636.PubMedCrossRefGoogle Scholar
  214. Uney, J.B. and Marchbanks, R.M. (1987) Specificity of ethylcho-line mustard aziridinium ion as an irreversible inhibitor of choline transport in cholinergic and noncholinergic tissue.J. Neurochem. 48, 1673–1676.PubMedCrossRefGoogle Scholar
  215. Urbanska, E., Ikonomidou, C, Sielucka, M. and Turski, W.A. (1991) Aminooxyacetic acid produces excitotoxic lesions in the rat striatum.Synapse 9, 129–135.PubMedCrossRefGoogle Scholar
  216. Urbanska, E.M., Dekundy, A., Kleinrok, Z., Turski, W.A. and Czuczwar, S.J. (1998) Glutamatergic receptor agonists and brain pathology. In Kostrzewa, R.M. (Ed.),Highly Selective Neurotoxins: Basic and Clinical Applications (Totowa, NJ: Humana Press), pp. 329–354.Google Scholar
  217. Usuki, E., Pearce, R., Parkinson, A. and Castagnoli Jr., N. (1996) Studies on the conversion of haloperidol and its tetrahy-dropyridium metabolites by human liver microsomes.Chem. Res. Toxicol. 9, 800–806.PubMedCrossRefGoogle Scholar
  218. Wagner, G.C., Carelli, R.M. and Jarvis, M.F. (1986) Ascorbic acid reduces the dopamine depletion induced by metham-phetamine and the 1-methyl-4-phenyl pyridinium ion.Neuropharmacology 25, 559–561.PubMedCrossRefGoogle Scholar
  219. Wagner, G., Lucot, J., Chuster, C. and Seidell, L. (1983) Alpha-methyltyrosine attenuates and reserpine increases methamphetamine-induced neuronal changes.Brain Res. 270, 285–288.PubMedCrossRefGoogle Scholar
  220. Wagner, G.C., Ricaurte, G.A., Johanson, C.E., Schuster, C.R. and Seiden, L.S. (1980a) Amphetamine induces depletion of dopamine and loss of dopamine uptake sites in caudate.Neurology 30, 547–550.PubMedGoogle Scholar
  221. Wagner, G.C., Ricaurte, G.A., Seiden, L.S., Schuster, C.R., Miller, R.J. and Westley, J. (1980b) Long-lasting depletions of striatal dopamine and loss of dopamine uptake sites following repeated administration of methamphetamine.Brain Res. 181, 151–160.PubMedCrossRefGoogle Scholar
  222. Wagner, G.C., Schuster, C.R. and Seiden, L.S. (1979) Methamphetamine induced changes in brain catecholamines in rats and guinea pigs.Drug Alcohol Depend. 4, 435–439.PubMedCrossRefGoogle Scholar
  223. Walsh, T.J., Herzog, C, Grandhi, C., Stackman, R.W. and Wiley, R.G. (1996) Injection of IgG 192-saporin into the medial septum produces cholinergic hypofunction and dose-dependent working memory deficits.Brain Res. 726, 69–79.PubMedCrossRefGoogle Scholar
  224. Weiss, J., Goldberg, M.P. and Choi, D.W. (1986) Ketamine protects cultured neocortical neurons from hypoxic injury.Brain Res. 380, 186–190.PubMedCrossRefGoogle Scholar
  225. Westlund, K.N., Denney, R.M., Kochersperger, L.M., Rose, R.M. and Abell, C.W. (1985) Distinct monoamine oxidase A and B populations in primate brain.Science 230, 181–183.PubMedCrossRefGoogle Scholar
  226. Whetsell Jr., W.O. (1997) Current concepts of excitotoxicity.J. Neuropathol. Exp. Neurol. 55, 1–13.CrossRefGoogle Scholar
  227. Wieloch, T. (1985) Hypoglycemia-induced neuronal damage prevented by an N-methyl-D-aspartate antagonist.Science 230, 681–683.PubMedCrossRefGoogle Scholar
  228. Wieloch, X, Lindvall, O., Blomquist, P. and Gage, F.H. (1985) Evidence for amelioration of ischaemic neuronal damage in the hippocampal formation by lesions of the perforant path.Neurol. Res. 7, 14–26.Google Scholar
  229. Wiley, R.G. (1992) Neural lesioning with ribosome-inactiva ting proteins: Suicide transport and immunolesioning.Trends Neurosci. 15, 285–290.PubMedCrossRefGoogle Scholar
  230. Winter, J., Bevan, S. and Campbell, E.A. (1995) Capsaicin and pain mechanisms.Br. J. Anaesthesia 75, 157–168.Google Scholar
  231. Wozniak, D.E, Brosnan-Watters, G., Nardi, A., McEwen, M., Corso, T.D., Olney, J.W. and Fix, A.S. (1996) MK-801 neurotoxicity in male mice — Histologic effects and chronic impairment in spatial learning.Brain Res. 707, 165–179.PubMedCrossRefGoogle Scholar
  232. Wu, E.Y., Smith, M.T., Bellomo, G. and DiMonte, D.A. (1990) Relationships between the mitochondrial transmembrane potential, ATP concentration, and cytotoxicity in isolated rat hepatocytes.Arch. Biochem. Biophys. 282, 358–362.PubMedCrossRefGoogle Scholar
  233. Yanagisawa, M., Yagi, N., Otsuka, M., Yanaihara, A. and Yanaihara, N. (1986) Inhibitory effects of galanin on the isolated spinal cord of the newborn rat.Neurosci. Lett. 70, 278–282.PubMedCrossRefGoogle Scholar
  234. Zaczek, R., Battaglia, G., Culp, S., Appel, N.M., Contrera, J.F. and DeSouza, E.B. (1990) Effects of repeated fenfluramine administration on indices of monoamine function in rat brain: Pharmacokinetic, dose response, regional specificity and time course data.J. Pharmacol. Exp. Titer. 253, 104–112.Google Scholar
  235. Zieher, L.M. and Jaim-Etcheverry, G. (1980) Neurotoxicity ofN-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4) on noradrenergic neurons is mimicked by its cyclic aziridinium derivative.Eur. J. Pharmacol. 65, 249–256.PubMedCrossRefGoogle Scholar
  236. Zieher, L.M. and Jaim-Etcheverry, G. (1973) Regional differences in the long-term effect of neonatal 6-hydroxydopa treatment on rat brain noradrenaline.Brain Res. 60, 199–207.PubMedCrossRefGoogle Scholar

Copyright information

© OPA (Overseas Publishers Association) N.V 1999

Authors and Affiliations

  1. 1.Department of Pharmacology, Quillen College of Medicine and Neuroscience Consortium of Northeast TennesseeEast Tennessee State UniversityJohnson CityUSA

Personalised recommendations