Skip to main content
Log in

Neurodegeneration and glia response in rat hippocampus following nitro-L-arginine methyl ester (L-NAME)

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Hippocampal neurodegeneration and glia response was examined following administration of the nitric oxide synthase inhibitor, Nw-nitro-L-arginine methyl ester (L-NAME). Male Long-Evans rats received L-NAME (50 mg/kg, ip) either once or twice a day for 4 days. Both dosing schedules decreased NOS activity by approximately 90%. At 10 and 30 days following cessation of L-NAME (2x/day), moderate neuronal death was evident in CA 1–2 pyramidal cells and dentate granule cells. Neurodegeneration was accompanied by increased astrocyte glial fibrillary acidic protein (GFAP) immunoreactivity yet, minimal astrocyte hypertrophy. Microglia response was limited to an increase in ramified microglia at 10 days, returning to normal by 30 days. As early as 4 days post-dosing (2x/day), GFAP mRNA levels were significantly elevated as were mRNA levels for tumor necrosis factor-α(TNFα), interleukin-1α (IL-1α), and interleukin 6 (IL-6). No alterations were seen with L-NAME dosing limited to once a day. The co-administration of a hippocampal neurotoxicant, trimethyltin (TMT), with the last dose of L-NAME (2x/day), produced an additive response pattern of neuronal degeneration including both CA1–2 and CA3–4 pyramidal neurons accompanied by TMT-induced astrocyte hypertrophy and prominent microglia reactivity. This was preceded by elevations in mRNA levels for GFAP, TNFα, IL-1α, and IL-6 similar to those seen with each substance alone. These data suggest that high levels of L-NAME can produce a pro-inflammatory environment in the brain and that neurodegeneration and neuroglia responses in the hippocampus can be induced by an alteration in the balance and regulation of local nitric oxide levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ayers, N.A., Kapas, L. and Krueger, J.M. (1997) The inhibitory effects of N omega-nitro-L-arginine methyl ester on nitric oxide synthase activity vary among brain regions in vivo but not in vitro. Neurochem. Res.22, 81–86.

    Article  PubMed  CAS  Google Scholar 

  • Beckman, J., Beckman, T., Chen, J., Marshall, P. and Greeman, B. (1990) Apparent hydroxyl radical production by peroxynitrite: implication for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA87, 1620–1624.

    Article  PubMed  CAS  Google Scholar 

  • Betz-Corradin, S.B., Fasel, N., Buchmuller-Roullier, Y., Ransign, A., Smith, J. and Mauel, J. (1993) Induction of macrophage nitric oxide production by interferon-gamma and tumor necrosis factor-alpha is enhanced by inter-leukin-10. Eur. J. Immunol.23, 2045–2048.

    Article  Google Scholar 

  • Black, S.M., Bedolli, M.A., Martinez, S., Bristow, J.D., Ferriero, D.M. and Soifer, S.J. (1995) Expression of neuronal nitric oxide synthase corresponds to regions of selective vulnerability to hypoxia-ischaemia in the developing rat brain. Neurobiol. Dis.2, 145–155.

    Article  PubMed  CAS  Google Scholar 

  • Boje, K.M. and Arora, P.K. (1992) Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res.587, 250–256.

    Article  PubMed  CAS  Google Scholar 

  • Bredt, D.S. and Snyder, S.H. (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. USA87, 682–685.

    Article  PubMed  CAS  Google Scholar 

  • Carreau A., Duval D., Poignet H., Scatton B., Vige X. and Nowicki, J.P. (1994) Neuroprotective efficacy of N-nitro-L-arginine after focal cerebral ischemia in the mouse and inhibition of cortical nitric oxide synthase. Eur J Pharmacol.256, 241–249.

    Article  PubMed  CAS  Google Scholar 

  • Chao, C.C., Hu, S., Molitor, T.W., Shaskan, E.G. and Peterson, P.K. (1992) Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J. Immunol.149, 2736–2741.

    PubMed  CAS  Google Scholar 

  • Chao, C.C, Anderson, W.R., Hu, S., Gekker, G., Martella, A. and Peterson, P.K. (1993) Activated microglia inhibit multiplication of Toxoplasma gondii via a nitric oxide mechanism. Clin. Immunol. Immunopath.67, 178–183.

    Article  CAS  Google Scholar 

  • Chen, T.Y., Chang, C.L., Tseng, C.C, Tsai, Y.C. and Cheng, J.T. (1998) NitroG-L-arginine methyl ester decreases minimum alveolar concentration of isoflurane and reduces brain nitric oxide synthase activity in rats. Acta. Anaesthesiol. Sin.36, 127–131.

    PubMed  CAS  Google Scholar 

  • Cross, A.H., Misko, T.P., Lin, R.F., Hickey, W.F., Troter, J.L. and Tilton, R.G. (1994) Aminoguanidin, an inhibitor of nitric oxide synthase, ameliorates experimental autoimmune encephalomyelitis in SJL mice. J. Clin. Invest.93, 2684–2690.

    Article  PubMed  CAS  Google Scholar 

  • Dawson V.L. (1995) Nitric oxide: role in neurotoxicity. Clinical Exper Pharmacol Physiol.22, 305–308.

    Article  CAS  Google Scholar 

  • Dawson, V.L. and Dawson, T.M. (1994) Nitric oxide: Actions and pathological roles. The Neuroscientist1, 9–20.

    Google Scholar 

  • Dawson, V.L. and Dawson, T.M. (1998)Nitric oxide in neuro-degeneration. In: Mize, R.R., Dawson, T.M., Dawson, V.L. and Friedlander, M.J. (Ed),Progress in Brain Research: Nitric Oxide in Brain Development, Plasticity and Disease, (Amsterdam, The Netherlands: Elsevier Science) pp. 215–230.

    Chapter  Google Scholar 

  • Dawson, T.M. and Snyder, S.H. (1994) Gases as biological messengers: Nitric oxide and carbon monoxide in the brain. J. Neurosci.14, 5147–5159.

    PubMed  CAS  Google Scholar 

  • Dawson, T.M., Dawson, V. and Snyder, S. (1992) A novel neuronal messenger molecule in brain: the free radical, nitric oxide. Ann. Neurol.32, 297–311.

    Article  PubMed  CAS  Google Scholar 

  • de Oliveira, C.F., Cintra, K.A., Teixeira, S.A., De Luca, I.M., Antunes, E. and De Nucci, G. (2000) Development of cardiomyocyte hypotrophy in rats under prolonged treatment with a low dose of a nitric oxide synthesis inhibitor. Eur. J. Pharmacol.10, 121–126.

    Article  Google Scholar 

  • Dinerman, J.L., Dawson, T.M., Schell, M.J., Snowman, A. and Snyder, S.H. (1994) Endothelial nitric oxide synthase localized to hippocampal pyramidal cells: Implications for synaptic plasticity. Proc. Natl. Acad. Sci. USA91, 4212–218.

    Article  Google Scholar 

  • Dwyer, M.A., Bredt, D.S. and Snyder, S.H. (1991) Nitric oxide synthase: irreversible inhibition by L-NG-Nitroarginine in brain in vitro and in vivo. Biochem. Biophys. Res. Commun.176, 1136–1141.

    Article  PubMed  CAS  Google Scholar 

  • Endoh, M., Maiese, K. and Wagner, J. (1994a) Expression of the neural form of nitric oxide synthase by CA1 hippocampal neurons and other CNS neurons. Neuroscience63, 679–689.

    Article  PubMed  CAS  Google Scholar 

  • Endoh, M., Maiese, K. and Wagner, J. (1994b) Expression of the inducible form of nitric oxide synthase by reactive astrocytes after transient global ischemia. Brain Res.651, 92–100.

    Article  PubMed  CAS  Google Scholar 

  • Galea, E., Feinstein, D.L. and Reis, D.J. (1992) Induction of calcium-independent nitric oxide synthase activity in primary rat glial cultures. Proc. Natl. Acad. Sci. USA89, 10945–10949.

    Article  PubMed  CAS  Google Scholar 

  • Hibbs, J.B. Jr., Taintor, R.R., Vavrin, Z., Granger, D.L., Drapier, J.C., Amber, I.J. and Lancaster, J. R. Jr. (1990)Synthesis of nitric oxide from a terminal quanidino nitrogen atom of L-arginine: a molecular mechanism regulating cellular proliferation that targets intracellular iron. In: Moncada, S. and Higgs, E.A. (Ed),Nitric Oxide From L-Arginine: A Bioregulatory System. (New York, NY: Elsevier Science), pp. 189–223.

    Google Scholar 

  • Iadecola, C, Ziaohong, X., Zhang, F., Hu, Jingru and El-Fakahany, E.E. (1994) Prolonged inhibition of brain nitric oxide synthase by short-term systemic administration of nitro-L-arginine methyl ester. Neurochem. Res.19, 501–505.

    Article  PubMed  CAS  Google Scholar 

  • Iwase, K., Iyama, K., Akagi, K., Yano, S., Fukunaga, K., Miyamoto, E., Mori, M and Takiguchi, M. (1998) Precise distribution of neuronal nitric oxide synthase mRNA in the rat brain revealed by non-radioisotopic in situ hybridization. Brain Res. Mol. Brain Res.53, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Kaufman, P.L. (1999) Nitric-oxide synthase and neurodegen-eration/neuroprotection. Proc. Natl. Acad. Sci. USA96(17), 9455–9456.

    Article  PubMed  CAS  Google Scholar 

  • Koyanagi, M., Egashira, K., Kubo-Inoue, M., Usui, M., Kita-moto, S., Tomita, H., Shimokawa, H. and Takeshita, A. (2000) Role of transforming growth factor-betal in cardiovascular inflammatory changes induced by chronic inhibition of nitric oxide synthesis. Hypertension35, 86–90.

    PubMed  CAS  Google Scholar 

  • Lamas, S., Michel, T., Collins, T., Brenner, B.M. and Marsden, P.A. (1992) Effects of interferon-gamma on nitric oxide synthase activity and endothelin-1 production by vascular endothelial cells. J. Clin. Invest.90, 879–887.

    Article  PubMed  CAS  Google Scholar 

  • Laszlo, F., Whittle, B.J., Evans, S.M. and Moncada, S. (1995) Association of microvascular leakage with induction of nitric oxide synthase: effects of nitric oxide synthase inhibitors in various organs. Eur. J. Pharmacol.283, 47–53.

    Article  PubMed  CAS  Google Scholar 

  • Lipton, S., Choi, Y., Pan, A., Lei, A., Chen, H., Sucher, N., Loscatzo, J., Singel, D. and Stamler, J. (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature364, 626–632.

    Article  PubMed  CAS  Google Scholar 

  • Lowenstein, C.J., Glatt, C.S., Bredt, D.S. and Snyder, S.H. (1992) Cloned and expressed macrophage nitric oxide synthase contracts with the brain enzyme. Proc. Natl. Acad. Sci. USA89, 6711–6715.

    Article  PubMed  CAS  Google Scholar 

  • Lowenstein, C.J. and Snyder, S.H. (1992) Nitric Oxide, A novel biologic messenger. Cell70, 705–707.

    Article  PubMed  CAS  Google Scholar 

  • Luvara, G., Pueyo, M.E., Philippe, M., Mandet, C, Savoie, R., Henrion, D. and Michel, J.B. (1998) Chronic blockade of NO synthase activity induces a proinflammatory pheno-type in the arterial wall: prevention by angiotensin II antagonism. Arterioscler. Thromb. Vase. Biol.18, 1408–1416.

    CAS  Google Scholar 

  • MacNaul, K. L and Hutchinson, N.I. (1993) Differential expression of iNOS and cNOS mRNA in human vascular smooth muscle cells and endothelial cells under normal and inflammatory conditions. Biochem. Biophys. Res. Commun.196, 1330–1334.

    Article  PubMed  CAS  Google Scholar 

  • Maier, W.E., Brown, H.W., Tilson, H.A., Luster, M.I. and Harry, G.J. (1995) Trimethyltin increases inter-leukin(IL)-la, IL-6 and tumor necrosis factor a mRNA levels in rat hippocampus. J. Neuroimmunol.59, 65–75.

    Article  PubMed  CAS  Google Scholar 

  • Marietta, M.A. (1993) Nitric oxide synthase structure and mechanism. J Biol Chem.268, 12231–12234.

    Google Scholar 

  • Mesenger, C, Verrecchia, C, Allix, M., Boulu, R.R. and Plot-kine, M. (1996) Reduction of the neurological deficit in mice with traumatic brain injury by nitric oxide synthase inhibitors. J. Neurotrauma13, 11–16.

    Article  Google Scholar 

  • Minc-Golomb, D., Tsarfaty, I. and Schwartz, J.P. (1994) Expression of inducible nitric oxide synthase by neurones following exposure to endotoxin and cytokine. Br. J. Pharmacol.112, 720–722.

    PubMed  CAS  Google Scholar 

  • Mollace, V. and Nistico G. (1995) Release of nitric oxide from astroglial cells: a key mechanism in neuroimmune disorders. Adv. Neuroimmunol.5, 421–430.

    Article  PubMed  CAS  Google Scholar 

  • Moncada, S., Palmer, R.M.J and Higgs, E.A. (1991) Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol. Rev.43, 109–142.

    PubMed  CAS  Google Scholar 

  • Moncada, C, Lekieffre, Arvin B. and Meldrum, B. (1992) Effect of NO synthase inhibition on NMD A- and ischae-mia-induced hippocampal lesions. NeuroReport3, 530–532.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, S., Grzybicki, D. and Simmons, M. (1995)Glial cells as nitric oxide sources and targets. In: Vincent, S.R. (Ed),Nitric Oxide in the Nervous System. (London, Academic Press), pp. 164–190.

    Google Scholar 

  • Murphy, S., Minor, R.L., Welk, G. and Harrison, D.G. (1990) Evidence for an astrocyte-derived vasorelaxing factor with properties similar to nitric oxide. J. Neurochem.55, 349–351.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, S., Simmons, M.L., Agullo, L., Garcia, A., Feinstein, D.L., Galea, E., Reis, D.J., Minc-Golomb, D. and Schwartz, J.P. (1993) Synthesis of nitric oxide in CNS glial cells. Trends in Neurosci.16, 323–328.

    Article  CAS  Google Scholar 

  • Nakashima, M.N., Yamashita, K., Kataoka, Y., Yamashita, Y.S. and Niwa, M. (1995) Time course of nitric oxide synthase activity in neuronal, glial and endothelial cells of rat striatum following focal cerebral ischemia. Cellular Molecular Neurobiol.15, 341–349.

    Article  CAS  Google Scholar 

  • Nathan, C. (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J.6, 3051–3064.

    PubMed  CAS  Google Scholar 

  • Nomura, Y. and Kitamura, Y. (1993) Inducible nitric oxide synthase in glial cells. Neurosci. Res.18, 103–107.

    Article  PubMed  CAS  Google Scholar 

  • Park, S.K. and Murphy, S. (1994) Duration of expression of inducible nitric oxide synthase in glial cells. J Neurosci. Res.39, 405–411.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, N.E. and Ignarro, L.J. (1992) Constitutive nitric oxide synthase from cerebellum is reversibly inhibited by nitric oxide formed from L-arginine. Biochem. Biophys. Res. Commun.189, 242–249.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, N., Kaurman, S. and Milstien, S. (1995) Parallel induction of nitric oxide and tetrahydrobiopterin synthesis by cytokines in rat glial cells. J. Neurochem.65, 895–902.

    Article  PubMed  CAS  Google Scholar 

  • Salvemini, D., Mollace, V., Pistelli, A., Anggard, E. and Vane, J. (1992) Cultured astrocytoma cells generate a nitric oxide-like factor from endogenous L-arginine and glyceryl trinitrate: effect of E. coli lipopolysaccharide. Br. J. Pharmacol.106, 931–936.

    CAS  Google Scholar 

  • Sancesario, G., Iannone, M., Morello, M., Nistico, G. and Bernard, G. (1994) Nitric Oxide inhibition aggravates ischemic damage of hippocampal but not of NADPH neurons in gerbils. Stroke25, 436–444.

    PubMed  CAS  Google Scholar 

  • Simmons, M. L and Murphy, S. (1992) Induction of nitric oxide synthase in glial cells. J. Neurochem.59, 879–905.

    Article  Google Scholar 

  • Sinz, E.H., Kochanek, P.M., Dixon, C.E., Clark, R.S., Carcillo, J.A., Schiding, J.K., Chen, M., Wisniewski, S.R., Carlos, T.M., Williams, D., DeKosky, S.T., Watkins, S.C, Marion, D.W. and Billiar, T.R. (1999) Inducible nitric oxide is an endogenous neuroprotectant after traumatic brain injury in rats and mice. J. Clin. Invest.104, 647–656.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, S.H. (1992) Nitric oxide: first in a new class of neurotransmitters? Science257, 494–496.

    Article  PubMed  CAS  Google Scholar 

  • Sparrow, J.R. (1995) Inducible nitric oxide synthase in the central nervous system. J. Mol. Neurosci.219, 219–229.

    Google Scholar 

  • Streit, W.J. and Kreutzberg, G.W. (1987) Lectin binding by resting and reactive microglia. J. Neurocytology16, 249–260.

    Article  CAS  Google Scholar 

  • Stuehr, D.J., Cho, H.J., Kwon, N.S., Weise, M.F. and Nathan, C.F. (1991) Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: a FAD- and FMN-containing flavoprotein. Proc. Natl. Acad. Sci. USA88, 7773–7777.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi, A., Isobe, K.I., Miyaishi, O., Sawada, M., Fan, Z.H., Nakashima, I. and Kiuchi, K. (1998) Microglial NO induces delayed neuronal death following acute injury in the striatum. Eur. J. Neurosci.10, 1613–1620.

    Article  PubMed  CAS  Google Scholar 

  • Wada, K., Chatzipanteli, K., Busto, R. and Dietrich, W.D. (1999) Effects of L-NAME and 7-NI on NOS catalytic activity and behavioral outcome after traumatic brain injury in the rat. J. Neurotrauma.16, 203–212.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, M.N. and Bisland, S.K. (1994) NADPH-diaphorase activity in activated astrocytes represents inducible nitric oxide synthase. Neuroscience59, 905–919.

    Article  PubMed  CAS  Google Scholar 

  • Wu, J., Kikuchi, T., Wang, Y., Sato, K. and Okumura, F. (2000) NOx-concentrations in the rat hippocampus and striatum have no direct relationship to anaesthesia induced by ketamine. Br. J. Anaesth.84, 183–189.

    PubMed  CAS  Google Scholar 

  • Xie, Q., Kashiwabara, Y. and Nathan, C. (1994) Role of transcription factor NF-kB/Rel in induction of nitric oxide synthase. J. Biol. Chem.269, 4705–4708.

    PubMed  CAS  Google Scholar 

  • Yoshizumi, M., Perrella, M.A., Burnett, J.C. Jr. and Lee, M.E. (1993) Tumor necrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half-life. Circ. Res.73, 205–209.

    PubMed  CAS  Google Scholar 

  • Zielasek, J., Tausch, M., Toyka, K.V. and Hartung, H.P. (1992) Production of nitrite by neonatal rat microglial cells/brain macrophages. Cell Immunol.141, 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Zielasek, J., Jung, S., Gold, R., Liew, F.Y., Toyka, K.V. and Hartung, H.P. (1995) Administration of nitric oxide synthase inhibitors in experimental autoimmune neuritis and experimental autoimmune encephalomyelitis. J. Neuroimmunol.58, 81–88.

    Article  PubMed  CAS  Google Scholar 

  • Zou, L.B., Yamada, K., Tanaka, T., Kameyama, T. and Nabeshima, T. (1998) Nitric oxide synthase inhibitors impair reference memory formation in a radial arm maze task in rats. Neuropharmacol.37, 323–330.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Jean Harry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harry, G.J., Sills, R., Schlosser, M.J. et al. Neurodegeneration and glia response in rat hippocampus following nitro-L-arginine methyl ester (L-NAME). neurotox res 3, 307–319 (2001). https://doi.org/10.1007/BF03033270

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033270

Keywords

Navigation