Zinc and copper of fetal organs during the second trimester of pregnancy

  • Jacobus P. Van Wouwe
  • Stephanie Hoogenkamp
  • Cornelis J. A. Van den Hamer


In fetus with a mean gestational age of 18 weeks (range 15–25,n=14), zinc and copper concentrations in liver, femur, rib, and skeletal muscle were measured. Zinc and copper concentrations are highest in liver. A trend of decreasing liver zinc concentrations during gestational age is suggested. Zinc concentrations are significantly correlated with copper concentrations in liver and in femur, suggesting steady growth in both organs. Femur zinc values rank ca. 30% of those in liver, femur copper, ca. 2%. Zinc or copper concentrations in rib are of the same levels as in skeletal muscle. Their concentration for zinc ranks ca. 20%, for copper, ca. 5% of the values in liver. All zinc and copper values are lower than reported in third trimester fetal organs.

Calculated zinc/copper molar ratios are distinctive for the various organs: in liver, 6±1, in femur, 73±8, and in soft tissues, 26±3. Calculated ratios from published values obtained from the third tri|mester of pregnancy show that the ratios in liver and skeletal muscle maintain these levels. The zinc/copper molar ratio can serve as an internal reference in zinc and/or copper measurements.

Index Entries

Second trimester of pregnancy fetal organs: liver, femur, rib, and skeletal muscle zinc and copper, concentrations zinc/copper molar ratios 


  1. 1.
    E. M. Widdowson, J. Dauncey, and J. C. L. Shaw,Proc. Nutr. Soc. 33, 275 (1974).PubMedGoogle Scholar
  2. 2.
    C. E. Casey and M. F. Robinson,Br. J. Nutr. 39, 639 (1978).PubMedCrossRefGoogle Scholar
  3. 3.
    J. C. L. Shaw,Am J. Dis. Child. 133, 1260 (1979).PubMedGoogle Scholar
  4. 4.
    J. C. L. Shaw,Am. J. Dis. Child. 134, 74 (1979).Google Scholar
  5. 5.
    S. Chaube, H. Nishimura, and C. A. Swinyard,Arch. Environ. Health,26, 237 (1973).PubMedGoogle Scholar
  6. 6.
    J. G. Dorea, M. Brito, and M. O. G. Araujo,J. Am. Coll. Nutr. 6, 491 (1987).PubMedGoogle Scholar
  7. 7.
    S. C. Vir, A. H. G. Love, and W. Thompson,Am. J. Clin. Nutr. 34, 2382 (1981).PubMedGoogle Scholar
  8. 8.
    C. A. Swanson and J. C. King,Obstetr. Gynecol. 62, 313 (1983).CrossRefGoogle Scholar
  9. 9.
    M. Abdulla, L. Löfberg, M. Jäerstad, I. Qvist, S. Svensson, and A. Åberg,Trace Element Analytical Chemistry in Medicine and Biology, Vol. 2, De Gruyter, Berlin, New York, 1983, 517.Google Scholar
  10. 10.
    K. Maršál and S. Furgyik,Acta Obstet. Gynecol. Scand. 66, 653 (1987).PubMedCrossRefGoogle Scholar
  11. 11.
    A. J. Hartz,Arch. Pathol. Lab. Med. 108, 65, (1984).PubMedGoogle Scholar
  12. 12.
    E. E. Ziegler, A. M. O’Donnell, S. E. Nelson, and S. J. Fomon,Growth 40, 329 (1976).PubMedGoogle Scholar
  13. 13.
    R. Milanino, M. Marrella, U. Moretti, E. Concari, and G. P. Velo,Agents and Actions 24, 356 (1988).PubMedCrossRefGoogle Scholar
  14. 14.
    K. Nakamura, S. Nishiyama, T. Takata, E. Suzuki, Y. Sugiura, T. Kobayashi, and B-Y. Chao,Environ. Res. 30, 175 (1983).PubMedCrossRefGoogle Scholar
  15. 15.
    L. Iyengar and S. V. Apte,Br. J. Nutr. 27, 313 (1972).PubMedCrossRefGoogle Scholar
  16. 16.
    J. L. Emery and D. J. Hilton,Acta Paediatr. 50, 233 (1961).PubMedCrossRefGoogle Scholar
  17. 17.
    J. L. Nooijen, C. J. A. Van den Hamer, J. P. W. Houtman, and S. W. Schalm,Clin. Chim. Acta 113, 335 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press, Inc 1991

Authors and Affiliations

  • Jacobus P. Van Wouwe
    • 1
  • Stephanie Hoogenkamp
    • 1
  • Cornelis J. A. Van den Hamer
    • 1
  1. 1.Department of Radiochemistry, Interfaculty Reactor InstituteDelft University of TechnologyDelftThe Netherlands

Personalised recommendations