Biological Trace Element Research

, Volume 29, Issue 1, pp 51–75 | Cite as

Minor and trace elements in human milk from Guatemala, Hungary, Nigeria, Philippines, Sweden, and Zaire

Results from a WHO/IAEA joint project
  • Robert M. Parr
  • Edouard M. DeMaeyer
  • Venkatesh G. Iyengar
  • Anthony R. Byrne
  • Gordon F. Kirkbright
  • Gerhard Schöch
  • L. Niinistö
  • Oscar Pineda
  • H. L. Vis
  • Yngve Hofvander
  • A. Omololu


Concentrations of As, Ca, Cd, Cl, Co, Cr, Cu, F, Fe, Hg, I, K, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Sn, V, and Zn were determined in human whole milk samples from Guatemala, Hungary, Nigeria, Phillippines, Sweden, and Zaire; in most of these countries, three groups of subjects representing different socioeconomic conditions were studied. Analytical quality control was a primary consideration throughout. The analytical techniques used were atomic absorption spectrophotometry, atomic emission spectrometry with an inductively coupled plasma, colorimetry, electrochemistry, using an ionselective electrode and neutron activation analysis.

The differences between median concentrations of Ca, Cl, Mg, K, Na, and P (minor elements) were lower than 20% among the six countries. Among trace elements, concentrations observed in Filipino milk for As, Cd, Co, Cr, Cu, F, Fe, Mn, Mo, Ni, Pb, Sb, Se, and V were higher than for milk samples from other countries. The remaining five countries showed a mixed picture of high and low values. In the case of at least some elements, such as, F, I, Hg, Mn, Pb, and Se, the environment appears to play a major role in determining their concentrations in human milk. The nutritional status of the mother, as reflected by her socioeconomic status, does not appear to influence significantly the breast milk concentrations of minor and trace elements.

Significant differences exist between the actual daily intakes observed in this study and current dietary recommendations made by, for example, WHO and the US National Academy of Sciences. These differences are particularly large (an order of magnitude or more!) for Cr, F, Fe, Mn, and Mo; for other elements, such as, Ca, Cu, Mg, P, and Zn, they amount to at least a factor 2. In the opinion of the present authors, these findings point to the need for a possible reassessment of the dietary requirements of young infants, with respect to minor and trace elements, particularly for the elements Ca, Cr, Cu, F, Fe, Mg, Mn, Mo, P, and Zn.

Index Entries

Human milk elemental composition trace elements geographic comparison geochemical influence lactation infant nutrition pediatric mineral nutrition developing countries urban rural 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Contemporary Patterns of Breast Feeding: World Health Organization Report, WHO, Geneva, 1981.Google Scholar
  2. 2.
    The Quantity and Quality of Breast Milk: World Health Organization Report on Collaborative Study on Breast-feeding, WHO, Geneva, 1985.Google Scholar
  3. 3.
    Minor and Trace Elements in Breast Milk: World Health Organization Report of a Joint WHO/IAEA Collaborative Study, WHO, Geneva, 1989.Google Scholar
  4. 4.
    R. M. Parr,Nutr. Res. Special Suppl.I, 5 (1985).Google Scholar
  5. 5.
    G. V. Iyengar,Elemental Composition of Human and Animal milk, IAEATECDOC-269, IAEA, Vienna, 1982.Google Scholar
  6. 6.
    Elemental Analysis of Biological Materials: International Atomic Energy Agency Technical Report Series, No. 197, Vienna, 1980.Google Scholar
  7. 7.
    G. V. Iyengar,J. Radioanal. Nucl. Chem. 110, 503 (1987).CrossRefGoogle Scholar
  8. 8.
    G. V. Iyengar, K. Kasperek, L. E. Feinendegen, X. Y. Wong, and H. Weese,Sci. Total Environ. 24, 267 (1982).PubMedCrossRefGoogle Scholar
  9. 9.
    R. F. Kirkbright,Nutr. Res. Suppl. I, 19 (1985).Google Scholar
  10. 10.
    A. R. Byrne and L. Kosta,J. Radioanal. Chem. 44, 247 (1978). See also,J. Radioanal. Chem. 58, 359 (1980),J. Radioanal. Chem. 20, 627 (1974), andCroat. Chim. Acta 46, 225 (1974).CrossRefGoogle Scholar
  11. 11.
    A. R. Byrne, C. Camara-Rica, R. Cornelis, J. J. M. de Goeij, G. V. Iyengar, G. Krikbright, G. Knapp, R. M. Parr, and M. Stoeppler,Fres. Z. Anal. Chem. 326, 723 (1987).CrossRefGoogle Scholar
  12. 12.
    S. Esala, E. Vuori, and L. Ninisto,Microchim. Acta 1, 155 (1983).CrossRefGoogle Scholar
  13. 13.
    B. Estrin and F. E. Boland,J. Assoc. Off. Agric. Chem. 53, 575 (1970).Google Scholar
  14. 14.
    Information Sheet for Reference Material A-11, Milk Powder: International Atomic Energy Agency, Vienna, July 1980.Google Scholar
  15. 15.
    Y. Muramatsu and R. M. Parr, Trace Elements in Biological and Environmental Reference Materials. Report IAEA/RL/128, Vienna, 1985.Google Scholar
  16. 16.
    G. V. Iyengar and R. M. Parr,Proc. Symp. on Production, Regulation and Analysis of Infant Formula, Association of the Official Analytical Chemists, Arlington, VA, 1985, pp. 233–245.Google Scholar
  17. 17.
    R. McGill, J. W. Tukey, and W. A. Larsen,The American Statistician 32, 12 (1978).CrossRefGoogle Scholar
  18. 18.
    M. C. Neville, B. A. Keller, and J. Seacat,Am. J. Clin. Nutr. 48, 1375 (1988).PubMedGoogle Scholar
  19. 19.
    A. Sadurskis, N. Kabir, and J. Wager,Am. J. Clin. Nutr. 48, 44 (1988).PubMedGoogle Scholar
  20. 20.
    Trace Elements in Human Nutrition: Technical Report Series No. 532, Geneva, 1973.Google Scholar
  21. 21.
    Report of an FAO/WHO Expert Group: Technical Report Series No. 230, Geneva, 1962.Google Scholar
  22. 22.
    Committee on Dietary Allowances and Food and Nutrition Board: Recommended Dietary Allowances, 9th Ed., Washington DC, National Academy of Sciences, 1980.Google Scholar
  23. 23.
    Joint FAO/WHO Expert Committee on Food Additives: Technical Report Series No. 505, Geneva, 1972.Google Scholar
  24. 24.
    Joint FAO/WHO Expert Committee on Food Additives: Technical Report Series No. 631, Geneva, 1978.Google Scholar
  25. 25.
    Joint FAO/WHO Food Standards Programme, Codex Alimentarius Commission: CAC/VOL XVII, Contaminants. Rome, FAD of the UN and WHO, 1984.Google Scholar
  26. 26.
    Joint FAO/WHO Expert Committee on Food Additives: Technical Report Series No. 683, 1982.Google Scholar
  27. 27.
    Joint FAO/WHO Expert Committee on Food Additives: Technical Report Series No. 696, Geneva, 1983.Google Scholar
  28. 28.
    Joint FAO/WHO Expert Committee on Food Additives: Technical Report Series No. 751, Geneva, 1987.Google Scholar
  29. 29.
    N. F. Butte, C. Garza, and E. Smith,Am. J. Clin. Nutr. 45, 42 (1987).PubMedGoogle Scholar
  30. 30.
    M. V. Karra, A. Kirksey, and O. Galal,Am. J. Clin. Nutr. 7, 47 (1988).Google Scholar
  31. 31.
    H. S. Dang, D. D. Jaiswal, and C. N. Wadhwani,Sci. Total Environ. 44, 177 (1985).PubMedCrossRefGoogle Scholar
  32. 32.
    L. Kosta, A. R. Byrne, and M. Dermelj,Sci. Total Environ. 29, 261 (1983).PubMedCrossRefGoogle Scholar
  33. 33.
    E. Cortes-Toro E, (personal communication).Google Scholar
  34. 34.
    G. V. Iyengar,Elemental Analysis of Biological Systems, vol. 1. Biomedical Environmental, Compositional, and Methodological Aspects of Trace Elements. CRC Press, Boca Raton, FL, 1989.Google Scholar
  35. 35.
    P. R. Flanagan, J. S. McLellan, J. Haist, M. G. Cherian, M. J. Chamberlain, and L. S. Valberg, Gastroenterology74, 841 (1978).PubMedGoogle Scholar
  36. 36.
    H. S. Dang, H. B. Desai, and S. R. Kayasth,J. Radioanal. Nucl. Chem. 84, 177 (1984).CrossRefGoogle Scholar
  37. 37.
    R. M. Parr,J. Radioanal. Chem. 39, 421 (1977).CrossRefGoogle Scholar
  38. 38.
    J. Kumpulainen, M. Uusitupa, and E. Vuori,Sci. Total Environ. 31, 71 (1983).PubMedCrossRefGoogle Scholar
  39. 39.
    C. E. Casey and K. M. Hambidge,Br. J. Nutr. 52, 73 (1984).PubMedCrossRefGoogle Scholar
  40. 40.
    M. Burguera, J. L. Burguera, and A. M. Garaboto,Trace Ele. Med. 5, 60 (1988).Google Scholar
  41. 41.
    S. Esala, E. Vuori, and A. Helle,Br. J. Nutr. 48, 201 (1982).PubMedCrossRefGoogle Scholar
  42. 42.
    D. O. Backer,Caries Res. 8, 181 (1974).CrossRefGoogle Scholar
  43. 43.
    M. G. Karmarkar and C. V. Ramakrishnan,Acta Paediatr. 49, 599 (1960).CrossRefGoogle Scholar
  44. 44.
    M. J. Murray, A. B. Murray, N. J. Murray, and M. B. MurrayBr. J. Nutr. 39, 627 (1978).PubMedCrossRefGoogle Scholar
  45. 45.
    Biology Data Book: P. L. Altman and D. S. Dittmer, eds.,Fed. Amer. Soc. Expt. Biol. Bethesda MD, 1974.Google Scholar
  46. 46.
    Composition of Mature Human Milk: Report on Health and Social Security, 12, Dept. of Health and Social Security, London, Stationary Office, 1977.Google Scholar
  47. 47.
    M. Muramatsu, M. Sumiya, and Y. Ohmomo,Hoken Butsuri,18, 113 (1983).Google Scholar
  48. 48.
    C. E. Casey and M. C. Neville,Am. J. Clin. Nutr. 45, 921 (1987).PubMedGoogle Scholar
  49. 49.
    D. Bougle, F. Bureau, and P. Foucault,Am. J. Clin. Nutr. 48, 652 (1988).PubMedGoogle Scholar
  50. 50.
    G. V. Iyengar and J. R. W. Woittiez,Clin. Chem. 34, 474 (1988).PubMedGoogle Scholar
  51. 51.
    O. Levander,J. Nutr. 119, 1869 (1989).PubMedGoogle Scholar
  52. 52.
    M. A. Funk, L. Hamlin, M. F. Picciano, A. Prentice, and J. A. Milner,Am. J. Clin. Nutr. 51, 220 (1990).PubMedGoogle Scholar
  53. 53.
    E. Vuori, PhD Thesis: Finland, University of Helsinki, 1979.Google Scholar
  54. 54.
    L. A. Vaughan, C. W. Weber, and S. R. Kemberlin,Am. J. Clin. Nutr. 32, 2301 (1979).PubMedGoogle Scholar
  55. 55.
    M. F. Picciano,Nutr. Rep. Int. 18, 5 (1978).Google Scholar
  56. 56.
    E. Roekens, H. Deelstra, and H. Robberecht,Sci. Total Environ. 24, 267 (1982).CrossRefGoogle Scholar
  57. 57.
    M. Sillanpaa, Micronutrients and the Nutrient Status of Soils: A Global Study. Rome,FAO Soils Bull. 48, 1982.Google Scholar
  58. 58.
    W. A. Galster,Environ. Health. Perspect. 15, 135 (1976).PubMedCrossRefGoogle Scholar
  59. 59.
    N. W. Ghelberg, I. Ruckert, and H. Strans,Igena, Hygiena, Bucharest 21, 17 (1972).Google Scholar

Copyright information

© Humana Press Inc. 1991

Authors and Affiliations

  • Robert M. Parr
    • 1
  • Edouard M. DeMaeyer
    • 2
  • Venkatesh G. Iyengar
    • 3
    • 4
  • Anthony R. Byrne
    • 5
  • Gordon F. Kirkbright
    • 6
  • Gerhard Schöch
    • 7
  • L. Niinistö
    • 8
  • Oscar Pineda
    • 9
  • H. L. Vis
    • 10
  • Yngve Hofvander
    • 11
  • A. Omololu
    • 12
  1. 1.International Atomic Energy AgencyViennaAustria
  2. 2.World Health OrganizationGeneva 27Switzerland
  3. 3.Institute of MedicineNuclear Research Center JuelichJeulichFRG
  4. 4.National Institute of Standards and TechnologyCenter for Analytical ChemistryGaithersburg
  5. 5.Nuclear Chemistry DepartmentJozef Stefan InstituteLjubljanaYugoslavia
  6. 6.Department of Instrumentation and Analytical ScienceUMISTManchesterUK
  7. 7.Forschungsinstitut fuer KinderernaehrungDortmundFRG
  8. 8.Laboratory of Inorganic and Analytical ChemistryHelsinki University of TechnologyEspooFinland
  9. 9.Institute of Nutrition for Central America and Panama (INCAP)Guatemala CityGuatemala
  10. 10.Department of PediatricsFree UniversityBrusselsBelgium
  11. 11.Department of PediatricsUniversity HospitalUppsalaSweden
  12. 12.College of MedicineUniversity of IbadanIbadanNigeria

Personalised recommendations