Rendiconti del Circolo Matematico di Palermo

, Volume 56, Issue 3, pp 349–357 | Cite as

Some remarks on reverse Hilbert and Hardy-Hilbert type inequalities

  • Mario Krnić
  • Josip Pečarić
  • Predrag Vuković


In this paper we obtain an extension of discrete Hilbert’s inequality, by using some numerical methods. We shall obtain, in a similar way as Yang did in [10], that the parameter from the kernel can be taken from the interval [3/2, 3). We also compare our findings with existing results, known from the literature.

2003 Mathematics Subject Classification


Key words and phrases

Inequalities Hilbert type inequality Hardy-Hilbert type inequality reverse inequality kernel equivalent form 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Hardy G. H., Littlewood J. E., Pólya G.,Inequalities, 2nd edition, Cambridge University Press, Cambridge, 1967.Google Scholar
  2. [2]
    Krnić M., Pečarić J.,A Hilbert inequality and an Euler-Maclaurin summation formula, Anziam J.,48 (2007), 419–431MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Krnić M., Pečarić J.,On some general Hilbert’s inequalities with non-conjugate parameters, Rend. Circ. Mat. Palermo,56 (2007).Google Scholar
  4. [4]
    Kuang J.,On new generalizations of Hilbert’s inequality and their applications, J. Math. anal. Appl.,245 (2000), 248–265.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Levin V.,On the two-parameter extension and analogue of Hilbert’s inequality, J. London Math. Soc.,11 (1936), 119–124MATHCrossRefGoogle Scholar
  6. [6]
    Mitrinović D. S., Pečarić J. E., Fink A. M.,Classical and new inequalities in analysis, Kluwer Academic Publishers, Dordrecht/Boston/London, 1993.MATHGoogle Scholar
  7. [7]
    Xi G.A Reverse Hardy-Hilbert-Type Inequality, J. Inequal. Appl., 2007, Art. ID 79758, 7 pp.Google Scholar
  8. [8]
    Yang B., Debnath L.,On a new generalization of Hardy-Hilbert’s inequality and its applications, J. Math. Anal. Appl.,233 (1999), 484–497.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Yang B.,On a strengthened version of the more accurate Hardy-Hilbert’s inequality, Acta Math. Sinica,42 (1999), 1103–1110.MATHGoogle Scholar
  10. [10]
    Yang B.,On a reverse of a Hardy-Hilbert type inequality, J. Inequal. Pure Appl. Math.,7 (2006), Art.,115, 7 pp.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Mario Krnić
    • 1
  • Josip Pečarić
    • 2
  • Predrag Vuković
    • 3
  1. 1.Faculty of Electrical Engineering and ComputingUniversity of ZagrebZagrebCroatia
  2. 2.Faculty of Textile TechnologyUniversity of ZagrebZagrebCroatia
  3. 3.Faculty of Teacher EducationUniversity of ZagrebCakovecCroatia

Personalised recommendations