Journal of Plant Biology

, Volume 51, Issue 1, pp 1–10 | Cite as

The HSP90-SGT1-RAR1 molecular chaperone complex: A core modulator in plant immunity

  • Young-Su Seo
  • Sang-Kyu Lee
  • Min-Young Song
  • Jung-Pil Suh
  • Tae-Ryong Hahn
  • Pamela Ronald
  • Jong-Seong Jeon


The HSP90 (heat shock protein 90), SGT1 (suppressor of G-two allele ofSkp1), and RAR1 (required forMla12 resistance) proteins in plants form a molecular chaperone complex which is involved in diverse biological signaling including development and disease resistance. The three components of this complex interact via specific protein binding motifs and recruit client proteins to initiate a specific signaling cascade in response to cellular or environmental cues. Although the functions of this chaperone complex during development/growth have not been well characterized, the HSP90 chaperone and SGT1 and RAR1 co-chaperones have been demonstrated to be essential signaling components of plant immune responses. These three proteins also play important roles in activation of the mammalian Nod genes, which possess a structurally conserved plant resistance (R) protein motif, NB-LRR (nucleotide binding site-leucine rich repeat). In this review, we summarize the structures and functions of these molecular chaperones, and discuss their putative modes of action in plant immune responses.


Chaperone HSP90 plant immunity RAR1 SGT1 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Austin MJ, Muskett P, Kahn K, Feys BJ, Jones JD, Parker JE (2002) Regulatory role of SCT1 in earlyR gene-mediated plant defenses/Science295: 2077–2080PubMedCrossRefGoogle Scholar
  2. Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Lefert P (2002) The RAR1 interactor SGT1, an essential component ofR gene-triggered disease resistance. Science295: 2073–2076PubMedCrossRefGoogle Scholar
  3. Azevedo C, Betsuyaku S, Peart J, Takahashi A, Noël L, Sadanandom A, Casais C, Parker J, Shirasu K (2006) Role of SCT1 in resistance protein accumulation in plant immunity. EMBO J25: 2007–2016PubMedCrossRefGoogle Scholar
  4. Belkhadir Y, Subramaniam R, Dangl JL (2004) Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Curr Opin Plant Biol7: 391–399PubMedCrossRefGoogle Scholar
  5. Bent AF, Mackey D (2007) Elicitors, effectors, andR genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol45: 399–436PubMedCrossRefGoogle Scholar
  6. Bhattarai KK, Li Q, Liu Y, Dinesh-Kumar SP, Kaloshian I (2007) The MI-1-mediated pest resistance requires Hsp90 and Sgt1. Plant Physiol144: 312–323PubMedCrossRefGoogle Scholar
  7. Bieri S, Mauch S, Shen QH, Peart J, Devoto A, Casais C, Ceron F, Schulze S, Steinbiss HH, Shirasu K, Schulze-Lefert P (2004) RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance. Plant Cell16: 3480–3495PubMedCrossRefGoogle Scholar
  8. Bittel P, Robatzek S (2007) Microbe-associated molecular patterns (MAMPs) probe plant immunity. Curr Opin Plant Biol10: 335–341PubMedCrossRefGoogle Scholar
  9. Botër M, Amigues B, Peart J, Breuer C, Kadota Y, Casais C, Moore C, Kleanthous C, Ochsenbein F, Shirasu K, Guerois R (2007) Structural and functional analysis of SCT1 reveals that its interaction with HSP90 is required for the accumulation of Rx, an R protein involved in plant immunity. Plant Cell DOI 10.1105/tpc.107.050427Google Scholar
  10. Brown MA, Zhu L, Schmidt C, Tucker PW (2007) Hsp90-from signal transcluction to cell transformation. Biochem Biophys Res Commun363: 241–246PubMedCrossRefGoogle Scholar
  11. Callis J, Vierstra RD (2000) Protein degradation in signaling. Curr Opin Plant Biol3: 381–386PubMedCrossRefGoogle Scholar
  12. Catlett MG, Kaplan KB (2006) Sgt1 p is a unique co-chaperone that acts as a client adaptor to link Hsp90 to Skp1p. J Biol Chem281: 33739–33748PubMedCrossRefGoogle Scholar
  13. Chandra-Shekara AC, Navarre D, Kachroo A, Kang HG, Klessig D, Kachroo P (2004) Signaling requirements and role of salicylic acid in HRT- and rrt-mediated resistance to turnip crinkle virus in Arabidopsis. Plant J40: 647–659PubMedCrossRefGoogle Scholar
  14. Chen S, Sullivan WP, Toft DO, Smith DF (1998) Differential interactions of p23 and the TPR-containing proteins Hop, Cyp40, FKBP52 and FKBP51 with Hsp90 mutants. Cell Stress Chaperones3: 118–129PubMedCrossRefGoogle Scholar
  15. Cleveland DW, Mao Y, Sullivan KF (2003) Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell112: 407–421PubMedCrossRefGoogle Scholar
  16. Cliff MJ, Williams MA, Brooke-Smith J, Barford D, Ladbury JE (2005) Molecular recognition via coupled folding and binding in a TPR domain. J Mol Biol346: 71 7–732CrossRefGoogle Scholar
  17. Cortajarena AL, Regan L (2006) Ligand binding by TPR domains. Protein Sci15: 1193–1198PubMedCrossRefGoogle Scholar
  18. da Silva Correia J, Miranda Y, Leonard N, Ulevitch R (2007a) SGT1 is essential for Noch activation. Proc Natl Acad Sci USA104: 6764–6769PubMedCrossRefGoogle Scholar
  19. da Silva Correia J, Miranda Y, Leonard N, Ulevitch RJ (2007b) The subunit CSN6 of the COP9 signalosome is cleaved during apoptosis. J Biol Chem282: 12557–12565CrossRefGoogle Scholar
  20. Dardick C, Ronald PC (2006) Plant and animal pathogen recognition receptors signal through non-RD kinases. PLoS Pathog2: e2PubMedCrossRefGoogle Scholar
  21. de la Fuente van Bentem S, Vossen JH, de Vries KJ, van Wees S, Tameling WI, Dekker HL, de Koster CG, Haring MA, Takken FL, Cornelissen BJ (2005) Heat shock protein 90 and its cochaperone protein phosphatase 5 interact with distinct regions of the tomato I-2 disease resistance protein. Plant J43: 284–298PubMedCrossRefGoogle Scholar
  22. Deshaies RJ (1999; SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol15: 435–467PubMedCrossRefGoogle Scholar
  23. Dolinski K, Muir S, Cardenas M, Heitman J (1997) All cyclophilins and FK506 binding proteins are, individually and collectively, dispensable for viability inSaccharomyces cerevisiae. Proc Natl Acad Sci USA94: 13093–13098PubMedCrossRefGoogle Scholar
  24. Dubacq C, Guerois R, Courbeyrette R, Kitagawa K, Mann C (2002) Sgt1p contributes to cyclic AMP pathway activity and physically interacts with the adenylyl cyclase Cyr1p/Cdc35p in budding yeast. Eukaryot Cɛ1: 568–582CrossRefGoogle Scholar
  25. Durrant WE, Rowland O, Piedras P, Hammond-Kosack KE, Jones JD (2000) cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. Plant Cell12: 963–977PubMedCrossRefGoogle Scholar
  26. Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection bv the necrotrophic pathogenBotrytis cinerea. Curr Biol10:7:51–757Google Scholar
  27. Gray WM, Muskett PR, Chuang HW, Parker JE (2003) Arabidopsis SGT1b is required for SCF(TIR1)-mediated auxin response. Plant Cell15: 1310–1319PubMedCrossRefGoogle Scholar
  28. Hahn JS (2005) Regulation of Nod1 bv Hsp90 chaperone complex. FEBS Lett579: 4513–4519PubMedCrossRefGoogle Scholar
  29. Hammond-Kosack KE, Jones JD (1997) Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol48: 575–607PubMedCrossRefGoogle Scholar
  30. Helmbrecht K, Zeise E, Rensing L (2000) Chaperones in cell cycle regulation and mitogenic signal transcluction: a review. Cell Prolif33: 341–365PubMedCrossRefGoogle Scholar
  31. Holt BF, Belkhadir Y, Dangl JL (2005) Antagonistic control of disease resistance protein liability in the plant immune system. Science309: 929–932PubMedCrossRefGoogle Scholar
  32. Holt SE, Aisner DL, Baur J, Tesmer VM, Dy M, Ouellette M, Trager JB, Morin GB, Toft DO, Shay JW, Wright WE, White MA (1999) Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Dev13: 11 7–826CrossRefGoogle Scholar
  33. Hubert DA, Tornero P, Belkhadir Y, Krishna P, Takahashi A, Shirasu K, Dangl JL (2003) Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO J22: 5679–5689PubMedCrossRefGoogle Scholar
  34. Jarosch B, Collins NC, Zellerhoff N, Schaffrath U (2005) RAR1. ROR1, and the actin cytoskeleton contribute to basal resistance toMagnaporthe gisea in barley. Mol Plant Microbe Interact18: 397–404PubMedCrossRefGoogle Scholar
  35. Jiang J, Ballinger CA, Wu Y, Dai Q, Cyr DM, Hohfeld J, Patterson C 2001) CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation. J Biol Chem276: 42938–42944PubMedCrossRefGoogle Scholar
  36. Jones JDG, Dangl, JL (2006) The plant immune system. Nature444: 323–329PubMedCrossRefGoogle Scholar
  37. Kitagawa K, Skowyra D, Elledge SJ, Harper JW, Hieter P (1999) SGT1 encodes an essert al component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. Mol Cell4: 21–33PubMedCrossRefGoogle Scholar
  38. Lee SW, Han SW, Bartley LE. Ronald PC (2006) Unique characteristics ofXanthomonas orvzae pv.oryzae AvrXa21 and implications for plant innate immunity. Proc Natl Acad Sci USA103: 18395–18400PubMedCrossRefGoogle Scholar
  39. Lee S-Y, Lee D-H (2005) Expression ofMbR4, a TIR-NBS type of appleR gene, confers to resistance to bacterial spot disease inArabidopsis. J Plant Biol48: 220–228Google Scholar
  40. Lee YT, Jacob J, Michowski W, Nowotny M, Kuznicki J, Chazin WJ (2004) HumanSgt1 binds HSP90 through the CHORD-Sgt1 domain and not the telratricopeptide repeat domain. J Biol Chem279: 16511–1651PubMedCrossRefGoogle Scholar
  41. Lei H, Venkatakrishnan A, Yu S, Kazlauskas A (2007) Protein kinase A-depenclent translocation of Hsp90 alpha impairs endothelial nitric-oxide synthase activity in high glucose and diabetes. J Biol Chem282: 9364–9371PubMedCrossRefGoogle Scholar
  42. Leister RT, Dahlbeck D, Day B, Li Y, Chesnokova O, Staskawicz BJ (2005) Molecular genetic evidence for the role of SCT1 in the intramolecular complementation of Bs2 protein activity inNicotiana benthamiana. Plant Cell17: 1268–1278PubMedCrossRefGoogle Scholar
  43. Liu Y, Schiff M, Serino G, Deng XW, Dinesh-Kumar SP (2002) Role of SCF ubiquitin-ligase and the COP9 signalosome in theN gene-mediated resistance response to Tobacco mosaic virus. Plant Cell14: 1483–1496PubMedCrossRefGoogle Scholar
  44. Liu Y, Burch-Smith T, Schiff M, Feng S, Dinesh-Kumar SP (2004) Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants. J Biol Chem279: 2101–2108PubMedCrossRefGoogle Scholar
  45. Lu R, Malcuit I, Moffett P, Ruiz MT, Peart J, Wu AJ, Rathjen JP, Bendahmane A, Day L, Baulcombe DC (2003) High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J22: 5690–5699.PubMedCrossRefGoogle Scholar
  46. Marcotte EM, Pellegrini M, Ng H-L, Rice DW, Yeates TO, Eisenberg D (1999) Detecting Protein Function and Protein-Protein Interactions from Genome Sequences. Science285: 751–753PubMedCrossRefGoogle Scholar
  47. Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the funct ons of plant disease resistance proteins. Annu Rev Plant Biol54: 23–61PubMedCrossRefGoogle Scholar
  48. Mayor A, Martinon F, De Smedt T, Petrilli V, Tschopp J (2007) A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nat Immunol8: 497–503PubMedCrossRefGoogle Scholar
  49. Moffett P, Farnham G, Peart J, Baulcombe DC (2002) Interaction between domains of a plant NBS-LRR protein in disease resistance-related cell death. EMBO J21: 4511–4519PubMedCrossRefGoogle Scholar
  50. Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell113: 935–944PubMedCrossRefGoogle Scholar
  51. Muskett P, andParker J (2003) Role of SGT1 in the regulation of plantR gene signalling. Microbes Infect5: 969–976PubMedCrossRefGoogle Scholar
  52. Nimchuk Z, Eulgem T, Holt BF, Dangl JL (2003) Recognition and response in the plant immune system. Annu Rev Genet37: 579–509PubMedCrossRefGoogle Scholar
  53. Nowotny M, Spiechowicz M, Jastrzebska B, Filipek A, Kitagawa K, Kuznicki J (2003) Calcium-regulated interaction of Sgt1 with S100A6 (calcyclin) and other S100 proteins. J Biol Chem278: 26923–26928PubMedCrossRefGoogle Scholar
  54. Nyarko A, Mosbahi K, Rovve AJ, Leech A, Boter M, Shirasu K, Kleanthous C (2007) TPR-Mediated self-association of plant SGT’1. Biochemistry46: 11331 -11341PubMedCrossRefGoogle Scholar
  55. Oirdi ME, Bouarab K (2007) Plant signaling components EDS1 and SGT’1 enhance disease caused by the necrotrophic pathogenBotrytis cinerea. New Phytologist175: 131–139PubMedCrossRefGoogle Scholar
  56. Pavithra SR, Kumar R, Tatu U (2007) Systems analysis of chaperone networks in the malarial parasitePlasmodium falciparum. PLoS Comput Biol14: 1701–1715Google Scholar
  57. Pearl LH (2005I) Hsp90 and Cdc37 — a chaperone cancer conspiracy. Curr Opin Genet Dev15: 55–61PubMedCrossRefGoogle Scholar
  58. Pearl LH, Prodromou C (2006) Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem75: 271–294PubMedCrossRefGoogle Scholar
  59. Peart JR.LUR, Sadanandom A, Malcuit I, Moffett R Brice DC, Schauser L, Jaggard DA, Xiao S, Coleman MJ, Dow M, Jones JD, Shirasu K, Baulcombe DC (2002) Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proc Natl Acad Sci USA99: 10865–10869PubMedCrossRefGoogle Scholar
  60. Picard D (2002) Heat-shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci59: 1640–1648PubMedCrossRefGoogle Scholar
  61. Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med228: 111–133Google Scholar
  62. Prodromou C, Siligardi G, O’Brien R, Woolfson DN, Regan L, Panaretou B, LadburyJE, Piper PW, Pearl LH (1999) Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. EMBO J18: 754–762PubMedCrossRefGoogle Scholar
  63. Queitsch C, Sangster TA, Lindquist S (2002) Hsp90 as a capacitor of phenotypic variation. Nature417: 618–624PubMedCrossRefGoogle Scholar
  64. Sadanandom A, Findlay K, Doonan JH, Schulze-Lefert P, Shirasu K (2004) CHPA, a cysteine- and histidine-rich-domain-containing protein, contributes to maintenance of the diploid state inAspergillus nidulans. Eukaryot Cell3: 984–991PubMedCrossRefGoogle Scholar
  65. Salinas-Mondragon RE, Garciduenas-Pina C, Guzman P (1999) Early elicitor induction in members of a novel multigene family coding for highly related RING-H2 proteins inArabidopsis thaliana. Plant Mol Biol40: 579–590PubMedCrossRefGoogle Scholar
  66. Sangster TA, Queitsch C (2005) The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity. Curr Opin Plant Biol8: 86–92PubMedCrossRefGoogle Scholar
  67. Sangster TA, Bahrami A, Wilczek A, Watanabe E, Schellenberg K, McLellan C, Kelley A, Kong SW, Queitsch C, Lindquist S (2007) Phenotypic diversity and altered environmental plasticity inArabidopsis thaliana with reduced Hsp90 levels. PLoS ONE2: e648PubMedCrossRefGoogle Scholar
  68. Sato S, Fujita N, Tsuruo T (2000) Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci USA97: 10832–10837PubMedCrossRefGoogle Scholar
  69. Scofield SR, Huang L, Brandt AS, Gill BS (2005) Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol138: 2165–2173PubMedCrossRefGoogle Scholar
  70. Shang Y, Li X, Cui H, He P, Thilmony R, Chintamanani S, Zwiesler-Vollick J, Gopalan S, Tang X, Zhou JM (2006) RAR1, a central player in plant immunity, is targeted byPseudomonas syringae effector AvrB. Proc Natl Acad Sci USA103: 19200–19205PubMedCrossRefGoogle Scholar
  71. Shao J, Irwin A, Hartson SD, Matts RL (2003) Functional dissection of cdc37: characterization of domain structure and amino acid residues critical for protein kinase binding. Biochemistry42: 12577–12588PubMedCrossRefGoogle Scholar
  72. Shen Q-H, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, Seki H, Ulker B, Somssich IE, Schulze-Lefert P (2007) Nuclear activity of MLA immune receptors links isolate-specific and basal disease resistance responses. Science315: 1098–1103PubMedCrossRefGoogle Scholar
  73. Shen Q-H, Schulze-Lefert P (2007) Rumble in the nuclear jungle: compartmentalization, trafficking, and nuclear action of plant immune receptors. EMBO J26: 4293–4301PubMedCrossRefGoogle Scholar
  74. Shirasu K, Lahaye T, Tan MVV, Zhou F, Azevedo C, Schulze-Lefert P (1999) A novel class of eukaryotic zinc-binding proteins is required for disease resistance signaling in barley and development in C. elegans. Cell99: 355–366PubMedCrossRefGoogle Scholar
  75. Shirasu K, Schulze-Lefert P (2003) Complex formation, promiscuity and multi-functionality: protein interactions in disease-resistance pathways. Trends Plant Sci8: 252–258PubMedCrossRefGoogle Scholar
  76. Silverstein AM, Galigniana MD, Chen MS, Owens-Grillo JK, Chinkers M, Pratt WB (1997) Protein phosphatase 5 is a major component of glucocorticoid receptor.hsp90 complexes with properties of an FK506-binding immunophilin. J Biol Chem272: 16224–16230PubMedCrossRefGoogle Scholar
  77. Spiechowicz M, Zylicz A, Bieganowaki P, Kuznicki J, Filipek A (2007) Hsp70 is a new target of Sgt1 -an interaction modulated by S100A6. Biochem Biophys Res Comm357: 1148–1153PubMedCrossRefGoogle Scholar
  78. Stebbins CE, Russo AA, Schneider C, Rosen N, Haiti FU, Pavletich NP (1997) Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell89: 239–250PubMedCrossRefGoogle Scholar
  79. Takahashi A, Casais C, Ichimura K, Shirasu K (2003) HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mecliated disease resistance in Arabidopsis. Proc Natl Acad Sci USA100: 11777–11782PubMedCrossRefGoogle Scholar
  80. Tor M, Cordon P;Cuzick A, Eulgem T, Sinapidou E, Mert-Türk F, Can C, Dangl JL, Holub EB (2002) Arabidopsis SCT1b is required for defense signaling conferred by several downy mildew resistance genes. Plant Cell14: 993–1003PubMedCrossRefGoogle Scholar
  81. Tornero P Merritt P, Sadanandom A, Shirasu K, Innes RW, Dangl JL (2002) RAR1 and NDR1 contribute quantitatively to disease resistance in Arabidopsis, and their relative contributions are dependent on the R gene assayed. Plant Cell14: 1005–1015PubMedCrossRefGoogle Scholar
  82. Wang Y, Gao M, Li Q, Wang L, Wang J, Jeon J-S, Qu N, Zhang Y, and He Z (2008) OsRAR1 and OsSGT1 physically interact and function in rice basal disease resistance. Mol Plant Microbe Interact, in pressGoogle Scholar
  83. Wang YS, Pi LY, Chen X, Chakrabarty PK, Jiang J, De Leon AL, Liu GZ, Li L, Benny U, Oard J, Ronald PC, Song WY (2006) Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease lesistance. Plant Cell18: 3635–3646PubMedCrossRefGoogle Scholar
  84. Xiao W, Chow BL, Broomfield S, Hanna M (2000) TheSaccharomyces cerevisiae RAD6 2,roup is composed of an error-prone and tow error-free postreplication repair pathways. Genetics155: 1633–1641PubMedGoogle Scholar
  85. Yamamoto T, Mori Y, Ishibashi T, Uchiyama Y, Sakaguchi N, Furukawa T, Hashimoto I, Kimura S, Sakaguchi K (2004) Characterization of Rad6 from a higher plant, rice (Oryza sativa L.) and its interaction with Sgt1, a subunit of the SCF ubiquitin ligase complex. Biochem Biophys Res Comm314: 434–439PubMedCrossRefGoogle Scholar
  86. Zhang Y, Dorey S, Swiderski M, Jones JD (2004) Expression of RPS4 in tobacco induces an AvrRps4-independent HR that requires EDS1, SGT1 and HSP90. Plant J40: 213–24PubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Korea 2008

Authors and Affiliations

  • Young-Su Seo
    • 1
  • Sang-Kyu Lee
    • 2
  • Min-Young Song
    • 2
  • Jung-Pil Suh
    • 3
  • Tae-Ryong Hahn
    • 2
  • Pamela Ronald
    • 1
  • Jong-Seong Jeon
    • 2
  1. 1.Department of Plant PathologyUniversity of CaliforniaDavisUSA
  2. 2.Plant Metabolism Research Center & Graduate School of BiotechnologyKyung Hee UniversityYonginKorea
  3. 3.IRRI-KOREA Office (IKO), National Institute of Crop ScienceRural Development AdministrationSuwonKorea

Personalised recommendations