Skip to main content
Log in

Overexpression ofENA1 from yeast increases salt tolerance inArabidopsis

  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

In yeast, the plasma membrane Na+/H+ antiporter and Na+-ATPase are key enzymes for salt tolerance.Saccharomyces cerevisiae Na+-ATPase (Enalp ATPase) is encoded by theENA1/PMR2A gene; expression ofENA1 is tightly regulated by Na+ and depends on ambient pH. Although Enalp is active mainly at alkaline pH values inS. cerevisiae, no Na+-ATPase has been found in flowering plants. To test whether this yeast enzyme would improve salt tolerance in plants, we introducedENA1 intoArabidopsis (cv. Columbia) under the control of the cauliflower mosaic virus 35S promoter. Transformants were selected for their ability to grow on a medium containing kanamyin. Southern blot analyses confirmed thatENA1 was transferred into theArabidopsis genome and northern blot analyses showed thatENA1 was expressed in the transformants. Several transgenic homozygous lines and wild-type (WT) plants were evaluated for salt tolerance. No obvious morphological or developmental differences existed between the transgenic and WT plants in the absence of stress. However, overexpression ofENA1 inArabidopsis improved seed germination rates and salt tolerance in seedlings. Under saline conditions, transgenic plants accumulated a lower amount of Na+ than did the wild type, and fresh and dry weights of the former were higher. Other experiments revealed that expression ofENA1 promoted salt tolerance in transgenicArabidopsis under both acidic and alkaline conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ anti-porter inArabidopsis. Science285: 1256–1258

    Article  PubMed  CAS  Google Scholar 

  • Banuelos MA, Rodrfguez-Navarro A (1998) P-type ATPase mediate sodium and potassium effluxes inSaccharomyces cerevisiae. J Biol Chem273: 1640–1646

    Article  PubMed  CAS  Google Scholar 

  • Banuelos MA, Quintero FJ, Rodríguez-Navarro A (1995) Functional expression of theENA1 (PMR2)-ATPase ofSaccharomyces cerevisiae inSchizosaccharomyces pombe. Biochim Biophys Acta1229: 233–238

    Article  PubMed  Google Scholar 

  • Berthomieu P;Conejero G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozomi N, Oiki S, Yamada K, Cellier F (2003) Functional analysis ofAtHKT1 inArabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J22: 2004–2014

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacci N (1987) Single-step method of RNA isolation by acid guanidiumthiocyanate-phenol-chloroform extraction. Anal Biochem162: 156–159

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: A simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. Plant J16: 735–743

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants: Where next? Aust J Plant Physiol22: 875–884

    Article  Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol22: 89–121

    Article  Google Scholar 

  • Fukuda A, Nakamura A, Tanaka Y (1999) Molecular cloning and expression of the Na+/H+ exchanger gene inOryza sativa. Biochim Biophys Acta 1446: 149–155

    PubMed  CAS  Google Scholar 

  • Gao XH, Ren ZH, Zhao YX, Zhang H (2003) Overexpression ofSOD2 increase salt toleranceof Arabidopsis. Plant Physiol133: 1873–1881

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Qiu Q, Quintero FJ, Pardo JM, Ohta M, Zhang C, Schumaker KS, Zhu JK (2004) Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance inArabidopsis thaliana. Plant Cell16: 435–449

    Article  PubMed  CAS  Google Scholar 

  • Hamada A, Shono M, Xia T, Ohta M, Hayashi Y, Tanaka A, Hayakawa T (2001) Isolation and characterization of Na+/H+ anti-porter gene from the halophyteAtriplex gmelini. Plant Mol Biol46: 35–42

    Article  PubMed  CAS  Google Scholar 

  • Haro R, Garcia de Blas B, Rodríguez-Navarro A (1991) A novel P- type ATPase from yeast involved in sodium transport. FEBS Lett291: 189–191

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol51: 463–499

    Article  PubMed  CAS  Google Scholar 

  • Jia ZP, Mccullough N, Martel R, Hemmingsen S, Young PG (1992) Gene amplification at a locus encoding a putative Na+/H+ antiporter confers sodium and lithium tolerance in fission yeast. EMBO J11: 1631–1640

    PubMed  CAS  Google Scholar 

  • Katiyar-Agarwal S, Zhu JH, Kim K, Agarwal M, Fu XM, Huang A, Zhu JK (2006) The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance inArabidopsis. Proc Natl Acad Sci USA103: 18816–18821

    Article  PubMed  CAS  Google Scholar 

  • Ma XL, Zhang Q, Shi HZ, Zhu JK, Zhao YX, Ma CL, Zhang H (2004) Molecular cloning and different expression of a vacuolar Na+/H+ antiporter gene inSuaeda salsa under salt stress. Biol Plant48: 219–225

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ25: 239–250

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant15: 473–497

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant cDNA. Nucleic Acids Res8: 4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Nakayama H, Yoshida K, Shinmyo A (2004) Yeast plasma membrane Ena1p ATPase alters alkali-cation homeostasis and confers increased salt tolerance in tobacco cultured cells. Biotechnol Bioengr85: 776–789

    Article  CAS  Google Scholar 

  • Qiu Q, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger inArabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA99: 8436–8441

    Article  PubMed  CAS  Google Scholar 

  • Ramos J (1999) Contrasting salt tolerance mechanisms inSaccharomyces cerevisiae andDebaryomyces hansenii. Recent Res Dev Microbiol3: 377–390

    CAS  Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet37: 1141–1146

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual, Ed 2. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Serrano R (1996) Salt tolerance in plants and microorganisms: Toxicity targets and defense responses. Intl Rev Cyto165: 1–52

    Article  CAS  Google Scholar 

  • Serrano R, Rodrfguez-Navarro A (2001) Ion homeostasis during salt stress in plants. Curr Opin Cell Biol13: 399–404

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Wu SJ, Zhu JK (2003) Overexpression of a plasma membrane Na+/H+ antiporter improves salt tolerance inArabidopsis. Nat Biotechnol21: 81–85

    Article  PubMed  CAS  Google Scholar 

  • Troll W, Lindsley J (1995) Proline content determination in plant tissues. J Biol Chem215: 655–660

    Google Scholar 

  • Wang BS, Zhao KF (1995) Comparison of extractive methods of Na+, K+ in wheat leaves. Plant Physiol Commun31: 50–52

    Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt-tolerance tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol19: 765–768

    Article  PubMed  CAS  Google Scholar 

  • Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerantBrassica plants: Characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci USA98: 12832–12836

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2000) Genetic analysis of plant salt tolerance usingArabidopsis. Plant Physiol124: 941–948

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci6: 66–71

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol53: 247–273

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Additional information

These authors contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, X., Gao, X., Li, W. et al. Overexpression ofENA1 from yeast increases salt tolerance inArabidopsis . J. Plant Biol. 51, 159–165 (2008). https://doi.org/10.1007/BF03030726

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030726

Keywords

Navigation