Skip to main content
Log in

Characterization of a cold-responsive gene,OsPTR1, isolated from the screening of β-Glucuronidase (GUS) gene-trapped rice

  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

T-DNA gene trap populations have been successfully used to isolate stress responsive genes by probing GUS expression after stress treatment. Here, we have identified cold responsive GUS expression in rice from Line 1C-118-30, where T-DNA was inserted at the 3rd exon ofOsPTR1. This gene encodes a putative peptide transporter sharing 40% homology withArabidopsis AtPTR2 and barley HvPTR. Northern analysis ofOsPTR1 confirmed that OsPTRi is inducible by cold stress, especially in the shoot but not in the root, thereby indicating an organ-specific response. Transcript was also induced by salt, and water stresses. Interestingly,OsPTR1 mRNA was highly expressed in theUBI::CBF1/DREB1b rice, indicating thatOsPTR1 may be regulated by the CBF/DREB stress signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  • Aguan K, Sugawara K, Suzuki N, Kusano T (1991) Isolation of genes for low-temperature-induced proteins in rice by a simple subtractive method. Plant Cell Physiol 32: 1285–1289

    CAS  Google Scholar 

  • Baxter-Burrell A, Chang R, Springer P, Bailey-Serres J (2003) Gene and enhancer trap transposable elements reveal oxygen deprivation-regulated genes and their complex patterns of expression inArabidopsis. Ann Bot (Lond) 91: 129–141

    Article  PubMed  CAS  Google Scholar 

  • Chen DH, Ronald PC (1999) A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Rep 17: 53–57

    Article  CAS  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: A regulator of coldinduced transcriptome and freezing tolerance inArabidopsis. Genes Dev 17: 1043–1054

    Article  PubMed  CAS  Google Scholar 

  • Dai Z, Gao J, An K, Lee JM, Edwards GE, An G (1996) Promoter elements controlling developmental and environmental regulation of a tobacco ribosomal protein gene L34. Plant Mol Biol 32: 1055–1065

    Article  PubMed  CAS  Google Scholar 

  • de los Reyes BG, McGrath JM (2003) Cultivar-specific seedling vigor and expression of a putative oxalate oxidase germin-like protein in sugar beet (Beta vulgaris L.). Theor Appl Genet 107: 54–61

    PubMed  Google Scholar 

  • Delrot S, Atanassova R, Gomes E, Thevenot PC (2001) Plasma membrane transporter: A machinery for uptake of organic solutes and stress resistance. Plant Sci 161: 391–404

    Article  CAS  Google Scholar 

  • Delrot S, Atanassova R, Maurousset L (2000) Regulation of sugar, amino acid and peptide plant membrane transporters. Biochim Biophys Acta 1465: 281–306

    Article  PubMed  CAS  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet E, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003)OsDREB genes in rice,Oryza sativa L., encode transcription activators that function in drought-, high-salt-, and cold-responsive gene expression. Plant J 33: 751–763

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of theArabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124: 1854–1865

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of theArabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16: 433–442

    Article  PubMed  CAS  Google Scholar 

  • Hauser M, Narita V, Donhardt AM, Naider F, Becker JM (2001) Multiplicity and regulation of genes encoding peptide transporters inSacchromyces cerevisiae. Mol Membr Biol 18: 105–112

    PubMed  CAS  Google Scholar 

  • Hughes MA, Dunn MA (1996) The molecular biology of plant acclimation to low temperature. J Exp Bot 47: 291–305

    Article  CAS  Google Scholar 

  • Ishitani M, Xiong L, Lee H, Stevenson B, Zhu JK (1998) HOS1, a genetic locus involved in cold-responsive gene expression inArabidopsis. Plant Cell 10: 1151–1161

    Article  PubMed  CAS  Google Scholar 

  • Ishitani M, Xiong L, Stevenson B, Zhu JK (1997) Genetic analysis of osmotic and cold stress signal transduction inArabidopsis: Interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell 9: 1935–1949

    Article  PubMed  CAS  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998)Arabidopsis CBF1 overex-pression induces COR genes and enhances freezing tolerance. Science 280: 104–106

    Article  PubMed  CAS  Google Scholar 

  • Jeon JS, An G (2001) Gene tagging in rice: A high throughput system for functional genomics. Plant Sci 161: 211–219

    Article  PubMed  CAS  Google Scholar 

  • Jeon JS, Lee S, Jung KH, Jun SH, Jeong DH, Lee J, Kim C, Jang S, Yang K, Nam J, An K, Han MJ, Sung RJ, Choi HS, Yu JH, Choi JH, Cho SY, Cha SS, Kim SI, An G (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22: 561–570

    Article  PubMed  CAS  Google Scholar 

  • Jeong DH, An S, Kang HG, Moon S, Han JJ, Park S, Lee HS, An K, An G (2002) T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol 130: 1636–1644

    Article  PubMed  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stressinducible transcription factor. Nat Biotech 17: 287–291

    Article  CAS  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein metabolism. J Mol Biol 157: 105–132

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Xiong L, Gong Z, Ishitani M, Stevenson B, Zhu JK (2001) TheArabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes Dev 15: 912–924

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Jeon J-S, Jung K-H, An G (1999) Binary vectors for efficient transformation of rice. J Plant Biol 42: 310–316

    Article  CAS  Google Scholar 

  • Lee S-C, Huh K-W, An K, An G, Kim S-R (2004a) Ectopic expression of a cold-inducible transcription factor, CBF1/DREB1b, in transgenic rice (Oryza saliva L.). Mol Cells (in press)

  • Lee S-C, Kim J-Y, Kim S-H, Kim S-J, Lee K, Han S-K, Choi H-S, Jeong D-H, An G, Kim S-R (2004b) Trapping and characterization of cold-responsive genes from T-DNA tagging lines in rice. Plant Sci 166: 69–79

    Article  CAS  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses: Chilling, freezing and high temperature stresses. Academic Press, New York

    Google Scholar 

  • Lin CM, Koh S, Stacey G, Yu SM, Lin TY, Tsay YF (2000) Cloning and functional characterization of a constitutively expressed nitrate transporter gene,OsNRT1, from rice. Plant Physiol 122: 379–388

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, inArabidopsis. Plant Cell 10: 1391–1406

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497

    Article  CAS  Google Scholar 

  • Rentsch D, Hirner B, Schmeizer E, Frommer WB (1996) Salt stress induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permeasetargeting mutant. Plant Cell 8: 1437–1446

    Article  PubMed  CAS  Google Scholar 

  • Rogers SO, Bendich AJ (1988) Extraction of DNA from plant tissues.In SB Gilson, RA Schilperoort, eds, Plant Molecular Biology Manual. Kluwer Academic Publishers, Dordrecht, A6 pp 1–10

    Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of plants.In Responses and adaptation to freezing stress. Springer-Verlag, Berlin

    Google Scholar 

  • Salmenkallio M, Sopanen T (1989) Amino acid and peptide uptake in the scutella of germinating grains of barley, wheat, rice and maize. Plant Physiol 89: 1285–1291

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninic R Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13: 61–72

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water stress response. Plant Physiol 115: 327–334

    Article  PubMed  CAS  Google Scholar 

  • Song W, Koh S, Czako M, Marton L, Drenkard E, Becker JM, Stacey G (1997) Antisense expression of the peptide transport gene AtPTR2-B delays flowering and arrests seed development in transgenicArabidopsis plants. Plant Physiol 114: 927–935

    Article  PubMed  CAS  Google Scholar 

  • Song W, Steiner HY, Zhang L, Naider F, Stacey G, Becker JM (1996) Cloning of a secondArabidopsis peptide transport gene. Plant Physiol 110: 171–178

    Article  PubMed  CAS  Google Scholar 

  • Springer PS (2000) Gene traps: Tools for plant development and genomics. Plant Cell 12: 1007–1020

    Article  PubMed  CAS  Google Scholar 

  • Stacey G, Koh S, Granger C, Becker JM (2002) Peptide transport in plants. Trends Plant Sci 7: 257–263

    Article  PubMed  CAS  Google Scholar 

  • Steiner HY, Naider F, Becker JM (1995) The PTR family: A new group of peptide transporters. Mol Microbiol 16: 825–834

    Article  PubMed  CAS  Google Scholar 

  • Steiner HY, Song W, Zhang L, Naider F, Becker JM, Stacey G (1994) AnArabidopsis peptide transporter is a member of a new class of membrane transport proteins. Plant Cell 6: 1289–1299

    Article  PubMed  CAS  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997)Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/ DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94: 1035–1040

    Article  PubMed  CAS  Google Scholar 

  • Sundaresan V, Springer P, Volpe T, Haward S, Jones JD, Dean C, Ma H, Martienssen R (1995) Patterns of gene action in plant development revealed by enhancer trap 33 and gene trap transposable elements. Genes Dev 9: 1797–1810

    Article  PubMed  CAS  Google Scholar 

  • Taji T, Ohsumi C, luchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought-and cold-inducible genes for galactinol synthase in stress tolerance inArabidopsis thaliana. Plant J 29: 417–426

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50: 571–599

    Article  PubMed  CAS  Google Scholar 

  • Triglia T, Peterson MG, Kemp DJ (1988) A procedure forin vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucl Acids Res 16: 81–86

    Article  Google Scholar 

  • West CE, Waterworth WM, Stephens SM, Smith CP, Bray CM (1998) Cloning and functional characterization of a peptide transporter expressed in the scutellum of barley grain during the early stages of germination. Plant J 15: 221–229

    Article  PubMed  CAS  Google Scholar 

  • Williams L, Miller A (2001) Transporters responsible for the uptake and partitioning of nitrogenous solutes. Annu Rev Plant Physiol Plant Mol Biol 52: 659–688

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp.indica). Science 296: 79–92

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Ryong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JY., Lee, SC., Jung, KH. et al. Characterization of a cold-responsive gene,OsPTR1, isolated from the screening of β-Glucuronidase (GUS) gene-trapped rice. J. Plant Biol. 47, 133–141 (2004). https://doi.org/10.1007/BF03030644

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030644

Keywords

Navigation