Skip to main content
Log in

How plants make and sense changes in their levels of Gibberellin

  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

To cope with constantly changing environments, plants employ versatile mechanisms. Gibberellins (GAs) are a class of well-characterized plant hormones that enable plastic growth and developments in higher plants throughout their life cycles. Several key components of GA metabolism and signaling have now been revealed through elegant molecular genetics analyses powered by genomics information fromArabidopsis and rice. Here, we highlight recent findings concerning the molecular mechanisms by which plants control their bioactive GA levels and sense/respond to changes in gibberellin concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

LITERATURE CITED

  • Achard P, Cheng H, Crauwe LD, Decat J, Schoutteten H, Moritz T, van der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science311: 91–94

    Article  PubMed  CAS  Google Scholar 

  • Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development131: 3357–3365

    Article  PubMed  CAS  Google Scholar 

  • Achard R, Vriezen WH, van der Straeten D, Harberd NP (2003) Ethylene regulatesArabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell15:2816–2825

    Article  PubMed  CAS  Google Scholar 

  • Alcázar R, Garda-Martmez JL, Cuevas JC, Tiburcio AF, Altabella T (2005) Overexpression ofADC2 inArabidopsis induces dwarf-ism and late-flowering through CA deficiency. Plant J43: 425–436

    Article  PubMed  CAS  Google Scholar 

  • Amador V, Monte E, Garcia-Martfnez JL, Prat S (2001) Gibberellins signal nuclear import of PHOR1, a photoperiod responsive protein with homology toDrosophila armadillo. Cell106: 343–354

    Article  PubMed  CAS  Google Scholar 

  • Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A (1999) Rice gib-berellin-insensitive dwarf mutant geneDwarf 1 encodes the a-subunit of GTP-binding protein. Proc Natl Acad Sci USA96: 10284–10289

    Article  PubMed  CAS  Google Scholar 

  • Borthwick HA, Hendricks SB, Parker MW, Toole EH, Toole VK (1952) A reversible photoreaction controlling seed germination. Proc Natl Acad Sci USA38: 929–934

    Article  PubMed  CAS  Google Scholar 

  • Boss PK, Thomas MR (2002) Association of dwarfism and floral induction with a grape ‘green revolution’ mutation. Nature416:847–850

    Article  PubMed  CAS  Google Scholar 

  • Bouquin T, Mattsson O, Nasted H, Foster R, Mundy J (2003) TheArabidopsis leulmutant defines a katanin p60 ortholog involved in hormonal control of microtubule orientation during cell growth. J Cell Sci116: 791–801

    Article  PubMed  CAS  Google Scholar 

  • Bouquin T, Meier C, Foster R, Nielsen ME, Mundy J (2001) Control of specific gene expression by gibberellin and brassinoster-oid. Plant Physiol127: 450–458

    Article  PubMed  CAS  Google Scholar 

  • Callis J, Vierstra RD (2000) Protein degradation in signaling. Curr Opin Plant Biol3: 381–386

    Article  PubMed  CAS  Google Scholar 

  • Cao D, Cheng H, Wu W, Soo HM, Peng J (2006) Gibberellin mobilizes distinct DELLA dependent transcriptomes to regulate seed germination and floral development inArabidopsis. Plant Physiol142: 509–525

    Article  PubMed  CAS  Google Scholar 

  • Cao D, Hussain A, Cheng H, Peng J (2005) Loss of function of four DELLA genes leads to light- and gibberellin-independent seed germination inArabidopsis. Planta223: 105–113

    Article  PubMed  CAS  Google Scholar 

  • Chandler PM, Marion-Poll A, Ellis M, Gubler F (2002) Mutants at theSlender1 locus of barley cv Himalaya: Molecular and physiological characterization. Plant Physiol129: 181–190

    Article  PubMed  CAS  Google Scholar 

  • Chen JG, Pandey S, Huang J, Alonjo JM, Ecker JR, Assmann SM, Jones AM (2004) GCR1 can act independently of heterotrim-eric G-protein in response to brassinosteroids and gibberellins inArabidopsis seed germination. Plant Physiol135: 907–915

    Article  PubMed  CAS  Google Scholar 

  • Cheng H, Qin L, Lee S, Fu X, Richards DE, Cao D, Luo D, Harberd NP, Peng J (2004) Gibberellin regulatesArabidopsis floral development via suppression of DELLA protein function. Development131: 1055–1064

    Article  PubMed  CAS  Google Scholar 

  • Chiang HH, Hwang I, Goodman HM (1995) Isolation ofthe Arabidopsis CA4 locus. Plant Cell7: 195–201

    Article  PubMed  CAS  Google Scholar 

  • Cowling RJ, Kamiya Y, Seto H, Harberd NP (1998) Gibberellin dose-response regulation ofCA4 gene transcript levels inArabidopsis. Plant Physiol117: 1195–1203

    Article  PubMed  CAS  Google Scholar 

  • Davies PJ (2004) Plant Hormones: Biosynthesis, Signal Transduction, Action. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature435: 441–445

    Article  PubMed  CAS  Google Scholar 

  • Diaz I, Vicente-Carbajosa J, Abraham Z, Martfnez M, Isabel-La Moneda I, Carbonero P (2002) The GAMYB protein from barley interacts with the DOF transcription factor BPBF and activates endosperm-specific genes during seed development. Plant J29: 453–464

    Article  PubMed  CAS  Google Scholar 

  • Dill A, Jung HS, Sun TP (2001) The DELLA motif is essential for gibberellin induced degradation of RGA. Proc Natl Acad Sci USA98: 14162–14167

    Article  PubMed  CAS  Google Scholar 

  • Dill A, Sun TP (2001) Synergistic derepression of gibberellin signaling by removing RGA and GAI function inArabidopsis thaliana. Genetics159: 777–785

    PubMed  CAS  Google Scholar 

  • Dill A, Thomas SG, Hu J, Steber CM, Sun TP (2004) TheArabidopsis F-box protein SLEEPY targets GA signaling repressors for GA-induced degradation. Plant Cell16: 1392–1405

    Article  PubMed  CAS  Google Scholar 

  • Fleet CM, Sun TP (2005) A DELLAcate balance: The role of gibberellin in plant morphogenesis. Curr Opin Plant Biol8: 77–85

    Article  PubMed  CAS  Google Scholar 

  • Fridborg I, Kuusk S, Moritz T, Sundberg E (1999) TheArabidopsis dwarf mutantshi exhibits reduced gibberellin responses conferred by overexpression of a new putative zinc finger protein. Plant Cell11: 1019–1031

    Article  PubMed  CAS  Google Scholar 

  • Fu X, Harberd NP (2003) Auxin promotesArabidopsis root growth by modulating gibberellin response. Nature421: 740–743

    Article  PubMed  CAS  Google Scholar 

  • Fu X, Richards DE, Ait-ali T, Hynes LW, Ougham H, Peng J, Harberd NP (2002) Gibberellin mediated proteasome-dependent degradation of the barley DELLA protein SLN1 repressor. Plant Cell14: 3191–3200

    Article  PubMed  CAS  Google Scholar 

  • Fu X, Richards DE, Fleck B, Xie D, Burton N, Harberd NP (2004) TheArabidopsis mutant sleepygar2-1 protein promotes plant growth by increasing the affinity of the SCFSLY1 E3 ubiquitin ligase for DELLA protein substrates. Plant Cell16: 1406–1418

    Article  PubMed  CAS  Google Scholar 

  • Fukazawa J, Sakai T, Ishida S, Yamaguchi I, Kamiya Y, Takahashi Y (2000) REPRESSION OF SHOOT GROWTH, a bZIP transcrip-tional activator, regulates cell elongation by controlling the level of gibberellins. Plant Cell12: 901–915

    Article  PubMed  CAS  Google Scholar 

  • Gocal GFW, Sheldon CC, Gubler F, Moritz T, Bagnall DJ, Mac-millan CP, Li SF, Parish RW, Dennis ES, Weigel D, King RW (2001)CAMYB-like genes, flowering and gibberellin signaling inArabidopsis. Plant Physiol127: 1682–1693

    Article  PubMed  CAS  Google Scholar 

  • Greenboim-Wainberg Y, Maymon I, Borochov R, Alvarez J, Olsze-wski N, Ori N, Eshed Y, Weiss D (2005) Cross talk between gibberellin and cytokinin: TheArabidopsis GA response inhibitor SPINDLY plays a positive role in cytokinin signaling. Plant Cell17: 92–102

    Article  PubMed  CAS  Google Scholar 

  • Griffiths J, Murase K, Rieu I, Zentella R, Zhang ZL, Powers SJ, Gong F, Phillips AL, Hedden P, Sun TP, Thomas SG (2006) Genetic characterization and functional analysis of the GID1 gibberellin receptors inArabidopsis. Plant Cell18: 3399–3414

    Article  PubMed  CAS  Google Scholar 

  • Gubler F, Chandler P, White R, Llewellyn D, Jacobsen J (2002) GA signaling in barley aleurone cells: Control of SLN1 and GAMYB expression. Plant Physiol129: 191–200

    Article  PubMed  CAS  Google Scholar 

  • Hartwek LM, Scott CL, Olszewski NE (2002) Two O-LinkedN- acetylglucosamine transferase genes ofArabidopsis thaliana L. Heynh. have overlapping functions necessary for gamete and seed development. Genetics161: 1279–1291

    Google Scholar 

  • Hay A, Craft J, Tsiantis M (2004) Plant hormones and homeoboxes: Bridging the gap? Bioessays26: 395–404

    Article  PubMed  CAS  Google Scholar 

  • Hedden P (2003) The genes of the Green Revolution. Trends Genet19: 5–9

    Article  PubMed  CAS  Google Scholar 

  • Hedden P, Phillips AL (2000) Gibberellin metabolism: New insights revealed by the genes. Trends Plant Sci5: 523–530

    Article  PubMed  CAS  Google Scholar 

  • Hellmann H, Estelle M (2002) Plant development: Regulation by protein degradation. Science297: 793–797

    Article  PubMed  CAS  Google Scholar 

  • Huq E, Al-sady B, Hudson M, Kim CH, Apel K, Quail PH (2004) PHYTOCHROME INTERACTING FACTOR 1 is a critical bHLH regulator of chlorophyll biosynthesis. Science305: 1937–1941

    Article  PubMed  CAS  Google Scholar 

  • Hussain A, Cao D, Cheng H, Wen Z, Peng J (2005) Identification of the conserved serine/threonine residues important for gib-berellin-sensitivity ofArabidopsis RGL2 protein. Plant J44: 88–99

    Article  PubMed  CAS  Google Scholar 

  • Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Fushuhara Y, Matsuoka M, Yamaguchi J (2001)slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell13: 999–1010

    Article  PubMed  CAS  Google Scholar 

  • Ishida S, Fukazawa J, Yuasa T, Takahashi Y (2004) Involvement of 14-3-3 signaling protein binding in the functional regulation of the transcriptional activator REPRESSION OF SHOOT GROWTH by gibberellins. Plant Cell16: 2641–2651

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen SE, Binkowski KA, Olszewski NE (1996) SPINDLY, a tetratricopeptide repeat protein involved in gibberellin signal transduction inArabidopsis. Proc Natl Acad Sci USA93: 9292–9296

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen SE, Olszewski NE (1993) Mutations at theSPINDLY locus ofArabidopsis alter gibberellin signal transduction. Plant Cell5: 887–896

    Article  PubMed  CAS  Google Scholar 

  • Jones HD, Smith SJ, Desikan R, Plakidou-Dymock S, Lovegrove A, Hooley R (1998) Heterotrimeric C proteins are implicated in gibberellin induction of d-amylase gene expression in wild oat aleurone. Plant Cell10: 245–253

    Article  PubMed  CAS  Google Scholar 

  • Kepinski S, Leyser O (2005) The F-box protein TIR1 is an auxin receptor. Nature435: 446–451

    Article  PubMed  CAS  Google Scholar 

  • Kim JA, Yun J, Lee MS, Kim YS, Woo JC, Park CM (2005) A basic helix-loop-helix transcription factor regulates cell elongation and seed germination. Mol Cells19: 334–341

    PubMed  CAS  Google Scholar 

  • King K, Moritz T, Harberd N (2001) Cibberellins are not required for normal stem growth inArabidopsis thaliana in the absence of CAI and RGA. Genetics159: 767–776

    PubMed  CAS  Google Scholar 

  • Koornneef M, Elgersma A, Hanhart CJ, van Loenen MEP, van Rijn L, Zeevaart JAD (1985) A gibberellin insensitive mutantof Arabidopsis thaliana. Physiol Plant65: 33–39

    Article  CAS  Google Scholar 

  • Lee S, Cheng H, King KE, Wang W, He Y, Hussain A, Lo J, Harberd NP, Peng J (2002) Gibberellin regulatesArabidopsis seed germination viaRCL2, aGAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev16: 646–658

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Lee S, Yang KY, Kim YM, Park SY, Kim SY, Soh MS (2006) Overexpression of PRE1 and its homologous genes activates gibberellin-dependent responses inArabidopsis thaliana. Plant Cell Physiol47: 591–600

    Article  PubMed  CAS  Google Scholar 

  • Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2004)dwarf and delayed flowering 1, a novelArabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J37: 720–729

    Article  PubMed  CAS  Google Scholar 

  • Matsushita A, Furumoto T, Ishida S, Takahashi Y (2007) AGF1, an AT-hook protein is necessary for the negative feedback of AtGA3ox1 encoding GA 3-oxidase. Plant Physiol143: 1152–1162

    Article  PubMed  CAS  Google Scholar 

  • McGinnis KM, Thomas SG, SouleJ D, Strader LC, Zale JM, Sun TP, Steber CM (2003) TheArabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell15: 1120–1130

    Article  PubMed  CAS  Google Scholar 

  • Moon J, Suh SS, Lee H, Choi KR, Hong JB, Paek NC, Kim SG, Lee I (2003) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering inArabidopsis. Plant J35: 613–623

    Article  PubMed  CAS  Google Scholar 

  • Muangprom A, Thomas SG, Sun TP, Osborn TC (2005) A novel dwarfing mutation in a green revolution gene fromBrassica rapa. Plant Physiol137: 931–938

    Article  PubMed  CAS  Google Scholar 

  • Nagatani A (2004) Light-regulated nuclear localization of phyto-chromes. Curr Opin Plant Biol7: 708–711

    Article  PubMed  CAS  Google Scholar 

  • Nakajima M, Shimada A, Takashi Y, Kim YC, Park SH, Ueguchi-Tanaka M, Suzuki H, Katoh E, luchi S, Kobayashi M, Maeda T, Matsuoka M, Yamaguchi I (2006) Identification and characterization ofArabidopsis gibberellin receptors. Plant J46: 880–889

    Article  PubMed  CAS  Google Scholar 

  • Ogas J, Kaufmann S, Henderson J, Somerville C (1999) PICKLE is a CHD3 chromatin remodeling factor that regulates the transition from embryonic to vegetative development inArabidopsis. Proc Natl Acad Sci USA96: 13839–13844

    Article  PubMed  CAS  Google Scholar 

  • Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellin biosynthesis and response duringArabidopsis seed germination. Plant Cell15: 1591–1604

    Article  PubMed  CAS  Google Scholar 

  • Oh E, Kim J, Park E, Kim Jl, Kang C, Choi G (2004) PIL5, a phyto-chrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination inArabidopsis thaliana. Plant Cell16: 3045–3058

    Article  PubMed  CAS  Google Scholar 

  • Oh E, Yamaguchi S, Kamiya Y, Bae G, Chung Wl, Choi G (2006) Light activates the degradation of PIL5 protein to promote seed germination through gibberellin inArabidopsis. Plant J47: 124–139

    Article  PubMed  CAS  Google Scholar 

  • Olszewski NE, Sun TP, Gubler F (2002) Gibberellin signaling: Biosynthesis, catabolism, and response pathways. Plant Cell14: S61-S80

    PubMed  CAS  Google Scholar 

  • Penfield S, Josse EM, Kannangara R, Gilday AD, Halliday KJ, Graham IA (2005) Cold and light control seed germination through the bHLH transcription factor SPATULA. Curr Biol15: 1998–2006

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GR, Harberd NP (1997) TheArabidopsis CAI gene defines a signalling pathway that negatively regulates gibberellin responses. Genes Dev11: 3194–3205

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green Revolution’ genes encode mutant gibberellin response modulators. Nature400: 256–261

    Article  PubMed  CAS  Google Scholar 

  • Richards DE, King KE, Ait-ali T, Harberd NP (2001) How gibberellin regulates plant growth and development: A molecular genetic analysis of gibberellin signaling. Annu Rev Plant Physiol Plant Mol Biol52: 67–88

    Article  PubMed  CAS  Google Scholar 

  • Ross JJ, O’Neill DP, Smith JJ, Kerckhoffs LHJ, Elliot RC (2000) Evidence that auxin promotes gibberellin A1 biosynthesis in pea. Plant J21: 547–552

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Morinaka Y, Ishiyama K, Kobayashi M, Itoh H, Kay-ano T, Iwahori S, Matsuoka M, Tanaka H (2003) Genetic manipulation of gibberellin metabolism in transgenic rice. Nat Biotechnol21: 909–913

    Article  PubMed  CAS  Google Scholar 

  • Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong DH, An G, Kitano H, Ashikari M, Matsuoka M (2003) Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science299: 1896–1898

    Article  PubMed  CAS  Google Scholar 

  • Schneider G, Jensen E, Spray CR, Phinney BO (1992) Hydrolysis and reconjugation of gibberellin A20 glucosyl ester by seedlings of Zeamays L. Proc Natl Acad Sci USA89: 8045–8048

    Article  PubMed  CAS  Google Scholar 

  • Shimada A, Ueguchi-Tanaka M, Sakamoto T, Fujioka S, Takatsutu S, Yoshida S, Sazuka T, Ashikari M, Matsuoka M (2006) The rice SPINDLY gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis. Plant J48: 390–402

    Article  PubMed  CAS  Google Scholar 

  • Silverstone AL, Ciampaglio CN, Sun TP (1998) TheArabidopsis RCA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell10: 155–169

    Article  PubMed  CAS  Google Scholar 

  • Silverstone AL, Jung HS, Dill A, Kawaide H, KamiyaY, Sun TP (2001) Repressing a repressor: Gibberellin-induced rapid reduction of the RGA protein inArabidopsis. Plant Cell13: 1555–1566

    Article  PubMed  CAS  Google Scholar 

  • Silverstone AL, Mak PYA, Martinez EC, Sun TP (1997) The newRCA locus encodes a negative regulator of gibberellin response inArabidopsis thaliana. Genetics146: 1087–1099

    PubMed  CAS  Google Scholar 

  • Silverstone AL, Tseng TS, Swain SM, Dill A, Jeong SY, Olszewski NE, Sun TP (2007) Functional analysis of SPINDLY in gibberellin signaling inArabidopsis. Plant Physiol143: 987–1000

    Article  PubMed  CAS  Google Scholar 

  • Soh MS (2006) Isolation and characterization of a novel mutation that confers gibberellin sensitive dwarfism inArabidopsis thaliana. J Plant Biol49: 160–166

    Article  CAS  Google Scholar 

  • Steber CM, Cooney S, McCourt P (1998) Isolation of the GA-response mutantslyl as a suppressor ofABI1-1 inArabidopsis thaliana. Genetics149: 509–521

    PubMed  CAS  Google Scholar 

  • Sun TP, Gubler F (2004) Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol55: 197–223

    Article  PubMed  CAS  Google Scholar 

  • Swain SM, Singh DP (2005) Tall tales from sly dwarves: Novel functions of gibberellins in plant development. Trends Plant Sci10: 123–129

    PubMed  CAS  Google Scholar 

  • Swain SM, Tseng TS, Olszewski NE (2001) Altered expression of SPINDLY affects gibberellin response and plant development. Plant Physiol126: 1174–1185

    Article  PubMed  CAS  Google Scholar 

  • Swain SM, Tseng TS, Thornton TM, Gopalraj M, Olszewski N (2002) SPINDLY is a nuclear localized repressor of gibberellin signal transduction expressed throughout the plant. Plant Physiol129: 605–615

    Article  PubMed  CAS  Google Scholar 

  • Tanaka-Ueguchi M, Itoh H, Oyama N, Koshioka M, Matsuika M (1998) Over-expression of a tobacco homeobox gene, NTH15, decreases the expression of a gibberellin biosynthetic gene encoding CA 20-oxidase. Plant J15: 391–400

    Article  PubMed  CAS  Google Scholar 

  • Toyomasu T, Tsuji H, Yamane H, Nakayama M, Yamaguchi I, Murofushi N, Takahashi N, Inoue Y (1993) Light effects on endogenous levels of gibberellins in photoblastic lettuce seeds. J Plant Growth Regul12: 85–90

    Article  CAS  Google Scholar 

  • Tseng TS, Salome PA, McClung CR, Olszewski NE (2004) SPINDLY and GIGANTEA interact and act inArabidopsis thaliana pathways involved in light responses, flowering, and rhythms in cotyledon movements. Plant Cell16: 1550–1563

    Article  PubMed  CAS  Google Scholar 

  • Tyler L, Thomas SG, Hu J, Dill A, Alonso JM, Ecker JR, Sun TP (2004) DELLA proteins and gibberellin-regulated seed germination and floral development inArabidopsis. Plant Physiol135: 1008–1019

    Article  PubMed  CAS  Google Scholar 

  • Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing Yl, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBERELLIN INSENSITIVE DVVARF1 encodes a soluble receptor for gibberellin. Nature437: 693–698

    Article  PubMed  CAS  Google Scholar 

  • Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, Ashikari M, Iwasaki Y, Kitano H, Matsuoka M (2000) Rice dwarf mutantdi, which is defective in the subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc Natl Acad Sci USA97:11638–11643

    Article  PubMed  CAS  Google Scholar 

  • Ullah H, Chen JG, Wang S, Jones AM (2002) Role of a heterotrimeric G protein in regulation ofArabidopsis seed germination. Plant Physiol129: 897–907

    Article  PubMed  CAS  Google Scholar 

  • Varbanova M, Yamaguchi S, Yang Y, Mckelvey K, Hanada A, Borochov R, Yu F, Jikumaru Y, Ross J, Cortes D, Ma CJ, Noel JP, Mander L, Shulaev V, Kamiya Y, Rodermel S, Weiss D, Pichersky E (2007) Methylation of gibberellins byArabidopsis GAMT1 and GAMT2. Plant Cell19: 32–45

    Article  PubMed  CAS  Google Scholar 

  • Vierstra RD (2003) The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci8: 135–142

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Caruso L, Downie AB, Perry SE (2004) The embryonic MADS domain protein AGAMOUS-like 15 directly regulates expression of a gene encoding an enzyme involved in gibberellin metabolism. Plant Cell16: 1206–1219

    Article  PubMed  CAS  Google Scholar 

  • Wen CK, Chang C (2002)Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. Plant Cell14: 87–100

    Article  PubMed  CAS  Google Scholar 

  • Wu K, Li L, Gage DA, ZeevaartJ AD (1996) Molecular cloning and photoperiod-regulated expression of gibberellin 20-oxidase from long-day plant spinach. Plant Physiol110: 547–554

    Article  PubMed  CAS  Google Scholar 

  • Xu YL, Li L, Gage DA, Zeevaart JAD (1999) Feedback regulation ofCA5 expression and metabolic engineering of gibberellin levels inArabidopsis. Plant Cell11: 927–936

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi S, Kamiya Y (2000) Gibberellin biosynthesis: Its regulation by endogenous and environmental signals. Plant Cell Physiol41: 251–257

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi S, Smith MW, Brown RSG, Kamiya Y, Sun TP (1998) Phytochrome regulation and differential expression of gibberellin 3b-hydroxylase genes in germinatingArabidopsis seed. Plant Cell10: 2115–2126

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Schwarz S, Saedler H, Huijser P (2007) SPL8, a local regulator in a subset of gibberellin-mediated developmental processes inArabidopsis. Plant Mol Biol63: 429–439

    Article  PubMed  CAS  Google Scholar 

  • Zhao XY, Yu XH, Liu XM, Lin CT (2007) Light regulation of gibberellins metabolism in seedling development. J Integrat Plant Biol49:21–27

    Article  CAS  Google Scholar 

  • Zhu Y, Nomura T, Xu Y, Zhang Y, Peng Y, Mao B, Hanada A, Zhou H, Wang R, Li P, Zhu X, Mander LN, Kamiya Y, Yamaguchi S, He Z (2006) ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell18: 442–456

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon-Soo Soh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Soh, MS. How plants make and sense changes in their levels of Gibberellin. J. Plant Biol. 50, 90–97 (2007). https://doi.org/10.1007/BF03030616

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030616

Keywords

Navigation