Advertisement

How plants make and sense changes in their levels of Gibberellin

  • Sumin Lee
  • Moon-Soo Soh
Article

Abstract

To cope with constantly changing environments, plants employ versatile mechanisms. Gibberellins (GAs) are a class of well-characterized plant hormones that enable plastic growth and developments in higher plants throughout their life cycles. Several key components of GA metabolism and signaling have now been revealed through elegant molecular genetics analyses powered by genomics information fromArabidopsis and rice. Here, we highlight recent findings concerning the molecular mechanisms by which plants control their bioactive GA levels and sense/respond to changes in gibberellin concentrations.

Keywords

Arabidopsis gibberellins hormone metabolism signaling 

LITERATURE CITED

  1. Achard P, Cheng H, Crauwe LD, Decat J, Schoutteten H, Moritz T, van der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science311: 91–94PubMedCrossRefGoogle Scholar
  2. Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development131: 3357–3365PubMedCrossRefGoogle Scholar
  3. Achard R, Vriezen WH, van der Straeten D, Harberd NP (2003) Ethylene regulatesArabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell15:2816–2825PubMedCrossRefGoogle Scholar
  4. Alcázar R, Garda-Martmez JL, Cuevas JC, Tiburcio AF, Altabella T (2005) Overexpression ofADC2 inArabidopsis induces dwarf-ism and late-flowering through CA deficiency. Plant J43: 425–436PubMedCrossRefGoogle Scholar
  5. Amador V, Monte E, Garcia-Martfnez JL, Prat S (2001) Gibberellins signal nuclear import of PHOR1, a photoperiod responsive protein with homology toDrosophila armadillo. Cell106: 343–354PubMedCrossRefGoogle Scholar
  6. Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A (1999) Rice gib-berellin-insensitive dwarf mutant geneDwarf 1 encodes the a-subunit of GTP-binding protein. Proc Natl Acad Sci USA96: 10284–10289PubMedCrossRefGoogle Scholar
  7. Borthwick HA, Hendricks SB, Parker MW, Toole EH, Toole VK (1952) A reversible photoreaction controlling seed germination. Proc Natl Acad Sci USA38: 929–934PubMedCrossRefGoogle Scholar
  8. Boss PK, Thomas MR (2002) Association of dwarfism and floral induction with a grape ‘green revolution’ mutation. Nature416:847–850PubMedCrossRefGoogle Scholar
  9. Bouquin T, Mattsson O, Nasted H, Foster R, Mundy J (2003) TheArabidopsis leulmutant defines a katanin p60 ortholog involved in hormonal control of microtubule orientation during cell growth. J Cell Sci116: 791–801PubMedCrossRefGoogle Scholar
  10. Bouquin T, Meier C, Foster R, Nielsen ME, Mundy J (2001) Control of specific gene expression by gibberellin and brassinoster-oid. Plant Physiol127: 450–458PubMedCrossRefGoogle Scholar
  11. Callis J, Vierstra RD (2000) Protein degradation in signaling. Curr Opin Plant Biol3: 381–386PubMedCrossRefGoogle Scholar
  12. Cao D, Cheng H, Wu W, Soo HM, Peng J (2006) Gibberellin mobilizes distinct DELLA dependent transcriptomes to regulate seed germination and floral development inArabidopsis. Plant Physiol142: 509–525PubMedCrossRefGoogle Scholar
  13. Cao D, Hussain A, Cheng H, Peng J (2005) Loss of function of four DELLA genes leads to light- and gibberellin-independent seed germination inArabidopsis. Planta223: 105–113PubMedCrossRefGoogle Scholar
  14. Chandler PM, Marion-Poll A, Ellis M, Gubler F (2002) Mutants at theSlender1 locus of barley cv Himalaya: Molecular and physiological characterization. Plant Physiol129: 181–190PubMedCrossRefGoogle Scholar
  15. Chen JG, Pandey S, Huang J, Alonjo JM, Ecker JR, Assmann SM, Jones AM (2004) GCR1 can act independently of heterotrim-eric G-protein in response to brassinosteroids and gibberellins inArabidopsis seed germination. Plant Physiol135: 907–915PubMedCrossRefGoogle Scholar
  16. Cheng H, Qin L, Lee S, Fu X, Richards DE, Cao D, Luo D, Harberd NP, Peng J (2004) Gibberellin regulatesArabidopsis floral development via suppression of DELLA protein function. Development131: 1055–1064PubMedCrossRefGoogle Scholar
  17. Chiang HH, Hwang I, Goodman HM (1995) Isolation ofthe Arabidopsis CA4 locus. Plant Cell7: 195–201PubMedCrossRefGoogle Scholar
  18. Cowling RJ, Kamiya Y, Seto H, Harberd NP (1998) Gibberellin dose-response regulation ofCA4 gene transcript levels inArabidopsis. Plant Physiol117: 1195–1203PubMedCrossRefGoogle Scholar
  19. Davies PJ (2004) Plant Hormones: Biosynthesis, Signal Transduction, Action. Kluwer Academic Publishers, DordrechtGoogle Scholar
  20. Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature435: 441–445PubMedCrossRefGoogle Scholar
  21. Diaz I, Vicente-Carbajosa J, Abraham Z, Martfnez M, Isabel-La Moneda I, Carbonero P (2002) The GAMYB protein from barley interacts with the DOF transcription factor BPBF and activates endosperm-specific genes during seed development. Plant J29: 453–464PubMedCrossRefGoogle Scholar
  22. Dill A, Jung HS, Sun TP (2001) The DELLA motif is essential for gibberellin induced degradation of RGA. Proc Natl Acad Sci USA98: 14162–14167PubMedCrossRefGoogle Scholar
  23. Dill A, Sun TP (2001) Synergistic derepression of gibberellin signaling by removing RGA and GAI function inArabidopsis thaliana. Genetics159: 777–785PubMedGoogle Scholar
  24. Dill A, Thomas SG, Hu J, Steber CM, Sun TP (2004) TheArabidopsis F-box protein SLEEPY targets GA signaling repressors for GA-induced degradation. Plant Cell16: 1392–1405PubMedCrossRefGoogle Scholar
  25. Fleet CM, Sun TP (2005) A DELLAcate balance: The role of gibberellin in plant morphogenesis. Curr Opin Plant Biol8: 77–85PubMedCrossRefGoogle Scholar
  26. Fridborg I, Kuusk S, Moritz T, Sundberg E (1999) TheArabidopsis dwarf mutantshi exhibits reduced gibberellin responses conferred by overexpression of a new putative zinc finger protein. Plant Cell11: 1019–1031PubMedCrossRefGoogle Scholar
  27. Fu X, Harberd NP (2003) Auxin promotesArabidopsis root growth by modulating gibberellin response. Nature421: 740–743PubMedCrossRefGoogle Scholar
  28. Fu X, Richards DE, Ait-ali T, Hynes LW, Ougham H, Peng J, Harberd NP (2002) Gibberellin mediated proteasome-dependent degradation of the barley DELLA protein SLN1 repressor. Plant Cell14: 3191–3200PubMedCrossRefGoogle Scholar
  29. Fu X, Richards DE, Fleck B, Xie D, Burton N, Harberd NP (2004) TheArabidopsis mutant sleepygar2-1 protein promotes plant growth by increasing the affinity of the SCFSLY1 E3 ubiquitin ligase for DELLA protein substrates. Plant Cell16: 1406–1418PubMedCrossRefGoogle Scholar
  30. Fukazawa J, Sakai T, Ishida S, Yamaguchi I, Kamiya Y, Takahashi Y (2000) REPRESSION OF SHOOT GROWTH, a bZIP transcrip-tional activator, regulates cell elongation by controlling the level of gibberellins. Plant Cell12: 901–915PubMedCrossRefGoogle Scholar
  31. Gocal GFW, Sheldon CC, Gubler F, Moritz T, Bagnall DJ, Mac-millan CP, Li SF, Parish RW, Dennis ES, Weigel D, King RW (2001)CAMYB-like genes, flowering and gibberellin signaling inArabidopsis. Plant Physiol127: 1682–1693PubMedCrossRefGoogle Scholar
  32. Greenboim-Wainberg Y, Maymon I, Borochov R, Alvarez J, Olsze-wski N, Ori N, Eshed Y, Weiss D (2005) Cross talk between gibberellin and cytokinin: TheArabidopsis GA response inhibitor SPINDLY plays a positive role in cytokinin signaling. Plant Cell17: 92–102PubMedCrossRefGoogle Scholar
  33. Griffiths J, Murase K, Rieu I, Zentella R, Zhang ZL, Powers SJ, Gong F, Phillips AL, Hedden P, Sun TP, Thomas SG (2006) Genetic characterization and functional analysis of the GID1 gibberellin receptors inArabidopsis. Plant Cell18: 3399–3414PubMedCrossRefGoogle Scholar
  34. Gubler F, Chandler P, White R, Llewellyn D, Jacobsen J (2002) GA signaling in barley aleurone cells: Control of SLN1 and GAMYB expression. Plant Physiol129: 191–200PubMedCrossRefGoogle Scholar
  35. Hartwek LM, Scott CL, Olszewski NE (2002) Two O-LinkedN- acetylglucosamine transferase genes ofArabidopsis thaliana L. Heynh. have overlapping functions necessary for gamete and seed development. Genetics161: 1279–1291Google Scholar
  36. Hay A, Craft J, Tsiantis M (2004) Plant hormones and homeoboxes: Bridging the gap? Bioessays26: 395–404PubMedCrossRefGoogle Scholar
  37. Hedden P (2003) The genes of the Green Revolution. Trends Genet19: 5–9PubMedCrossRefGoogle Scholar
  38. Hedden P, Phillips AL (2000) Gibberellin metabolism: New insights revealed by the genes. Trends Plant Sci5: 523–530PubMedCrossRefGoogle Scholar
  39. Hellmann H, Estelle M (2002) Plant development: Regulation by protein degradation. Science297: 793–797PubMedCrossRefGoogle Scholar
  40. Huq E, Al-sady B, Hudson M, Kim CH, Apel K, Quail PH (2004) PHYTOCHROME INTERACTING FACTOR 1 is a critical bHLH regulator of chlorophyll biosynthesis. Science305: 1937–1941PubMedCrossRefGoogle Scholar
  41. Hussain A, Cao D, Cheng H, Wen Z, Peng J (2005) Identification of the conserved serine/threonine residues important for gib-berellin-sensitivity ofArabidopsis RGL2 protein. Plant J44: 88–99PubMedCrossRefGoogle Scholar
  42. Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Fushuhara Y, Matsuoka M, Yamaguchi J (2001)slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell13: 999–1010PubMedCrossRefGoogle Scholar
  43. Ishida S, Fukazawa J, Yuasa T, Takahashi Y (2004) Involvement of 14-3-3 signaling protein binding in the functional regulation of the transcriptional activator REPRESSION OF SHOOT GROWTH by gibberellins. Plant Cell16: 2641–2651PubMedCrossRefGoogle Scholar
  44. Jacobsen SE, Binkowski KA, Olszewski NE (1996) SPINDLY, a tetratricopeptide repeat protein involved in gibberellin signal transduction inArabidopsis. Proc Natl Acad Sci USA93: 9292–9296PubMedCrossRefGoogle Scholar
  45. Jacobsen SE, Olszewski NE (1993) Mutations at theSPINDLY locus ofArabidopsis alter gibberellin signal transduction. Plant Cell5: 887–896PubMedCrossRefGoogle Scholar
  46. Jones HD, Smith SJ, Desikan R, Plakidou-Dymock S, Lovegrove A, Hooley R (1998) Heterotrimeric C proteins are implicated in gibberellin induction of d-amylase gene expression in wild oat aleurone. Plant Cell10: 245–253PubMedCrossRefGoogle Scholar
  47. Kepinski S, Leyser O (2005) The F-box protein TIR1 is an auxin receptor. Nature435: 446–451PubMedCrossRefGoogle Scholar
  48. Kim JA, Yun J, Lee MS, Kim YS, Woo JC, Park CM (2005) A basic helix-loop-helix transcription factor regulates cell elongation and seed germination. Mol Cells19: 334–341PubMedGoogle Scholar
  49. King K, Moritz T, Harberd N (2001) Cibberellins are not required for normal stem growth inArabidopsis thaliana in the absence of CAI and RGA. Genetics159: 767–776PubMedGoogle Scholar
  50. Koornneef M, Elgersma A, Hanhart CJ, van Loenen MEP, van Rijn L, Zeevaart JAD (1985) A gibberellin insensitive mutantof Arabidopsis thaliana. Physiol Plant65: 33–39CrossRefGoogle Scholar
  51. Lee S, Cheng H, King KE, Wang W, He Y, Hussain A, Lo J, Harberd NP, Peng J (2002) Gibberellin regulatesArabidopsis seed germination viaRCL2, aGAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev16: 646–658PubMedCrossRefGoogle Scholar
  52. Lee S, Lee S, Yang KY, Kim YM, Park SY, Kim SY, Soh MS (2006) Overexpression of PRE1 and its homologous genes activates gibberellin-dependent responses inArabidopsis thaliana. Plant Cell Physiol47: 591–600PubMedCrossRefGoogle Scholar
  53. Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2004)dwarf and delayed flowering 1, a novelArabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J37: 720–729PubMedCrossRefGoogle Scholar
  54. Matsushita A, Furumoto T, Ishida S, Takahashi Y (2007) AGF1, an AT-hook protein is necessary for the negative feedback of AtGA3ox1 encoding GA 3-oxidase. Plant Physiol143: 1152–1162PubMedCrossRefGoogle Scholar
  55. McGinnis KM, Thomas SG, SouleJ D, Strader LC, Zale JM, Sun TP, Steber CM (2003) TheArabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell15: 1120–1130PubMedCrossRefGoogle Scholar
  56. Moon J, Suh SS, Lee H, Choi KR, Hong JB, Paek NC, Kim SG, Lee I (2003) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering inArabidopsis. Plant J35: 613–623PubMedCrossRefGoogle Scholar
  57. Muangprom A, Thomas SG, Sun TP, Osborn TC (2005) A novel dwarfing mutation in a green revolution gene fromBrassica rapa. Plant Physiol137: 931–938PubMedCrossRefGoogle Scholar
  58. Nagatani A (2004) Light-regulated nuclear localization of phyto-chromes. Curr Opin Plant Biol7: 708–711PubMedCrossRefGoogle Scholar
  59. Nakajima M, Shimada A, Takashi Y, Kim YC, Park SH, Ueguchi-Tanaka M, Suzuki H, Katoh E, luchi S, Kobayashi M, Maeda T, Matsuoka M, Yamaguchi I (2006) Identification and characterization ofArabidopsis gibberellin receptors. Plant J46: 880–889PubMedCrossRefGoogle Scholar
  60. Ogas J, Kaufmann S, Henderson J, Somerville C (1999) PICKLE is a CHD3 chromatin remodeling factor that regulates the transition from embryonic to vegetative development inArabidopsis. Proc Natl Acad Sci USA96: 13839–13844PubMedCrossRefGoogle Scholar
  61. Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellin biosynthesis and response duringArabidopsis seed germination. Plant Cell15: 1591–1604PubMedCrossRefGoogle Scholar
  62. Oh E, Kim J, Park E, Kim Jl, Kang C, Choi G (2004) PIL5, a phyto-chrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination inArabidopsis thaliana. Plant Cell16: 3045–3058PubMedCrossRefGoogle Scholar
  63. Oh E, Yamaguchi S, Kamiya Y, Bae G, Chung Wl, Choi G (2006) Light activates the degradation of PIL5 protein to promote seed germination through gibberellin inArabidopsis. Plant J47: 124–139PubMedCrossRefGoogle Scholar
  64. Olszewski NE, Sun TP, Gubler F (2002) Gibberellin signaling: Biosynthesis, catabolism, and response pathways. Plant Cell14: S61-S80PubMedGoogle Scholar
  65. Penfield S, Josse EM, Kannangara R, Gilday AD, Halliday KJ, Graham IA (2005) Cold and light control seed germination through the bHLH transcription factor SPATULA. Curr Biol15: 1998–2006PubMedCrossRefGoogle Scholar
  66. Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GR, Harberd NP (1997) TheArabidopsis CAI gene defines a signalling pathway that negatively regulates gibberellin responses. Genes Dev11: 3194–3205PubMedCrossRefGoogle Scholar
  67. Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green Revolution’ genes encode mutant gibberellin response modulators. Nature400: 256–261PubMedCrossRefGoogle Scholar
  68. Richards DE, King KE, Ait-ali T, Harberd NP (2001) How gibberellin regulates plant growth and development: A molecular genetic analysis of gibberellin signaling. Annu Rev Plant Physiol Plant Mol Biol52: 67–88PubMedCrossRefGoogle Scholar
  69. Ross JJ, O’Neill DP, Smith JJ, Kerckhoffs LHJ, Elliot RC (2000) Evidence that auxin promotes gibberellin A1 biosynthesis in pea. Plant J21: 547–552PubMedCrossRefGoogle Scholar
  70. Sakamoto T, Morinaka Y, Ishiyama K, Kobayashi M, Itoh H, Kay-ano T, Iwahori S, Matsuoka M, Tanaka H (2003) Genetic manipulation of gibberellin metabolism in transgenic rice. Nat Biotechnol21: 909–913PubMedCrossRefGoogle Scholar
  71. Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong DH, An G, Kitano H, Ashikari M, Matsuoka M (2003) Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science299: 1896–1898PubMedCrossRefGoogle Scholar
  72. Schneider G, Jensen E, Spray CR, Phinney BO (1992) Hydrolysis and reconjugation of gibberellin A20 glucosyl ester by seedlings of Zeamays L. Proc Natl Acad Sci USA89: 8045–8048PubMedCrossRefGoogle Scholar
  73. Shimada A, Ueguchi-Tanaka M, Sakamoto T, Fujioka S, Takatsutu S, Yoshida S, Sazuka T, Ashikari M, Matsuoka M (2006) The rice SPINDLY gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis. Plant J48: 390–402PubMedCrossRefGoogle Scholar
  74. Silverstone AL, Ciampaglio CN, Sun TP (1998) TheArabidopsis RCA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell10: 155–169PubMedCrossRefGoogle Scholar
  75. Silverstone AL, Jung HS, Dill A, Kawaide H, KamiyaY, Sun TP (2001) Repressing a repressor: Gibberellin-induced rapid reduction of the RGA protein inArabidopsis. Plant Cell13: 1555–1566PubMedCrossRefGoogle Scholar
  76. Silverstone AL, Mak PYA, Martinez EC, Sun TP (1997) The newRCA locus encodes a negative regulator of gibberellin response inArabidopsis thaliana. Genetics146: 1087–1099PubMedGoogle Scholar
  77. Silverstone AL, Tseng TS, Swain SM, Dill A, Jeong SY, Olszewski NE, Sun TP (2007) Functional analysis of SPINDLY in gibberellin signaling inArabidopsis. Plant Physiol143: 987–1000PubMedCrossRefGoogle Scholar
  78. Soh MS (2006) Isolation and characterization of a novel mutation that confers gibberellin sensitive dwarfism inArabidopsis thaliana. J Plant Biol49: 160–166CrossRefGoogle Scholar
  79. Steber CM, Cooney S, McCourt P (1998) Isolation of the GA-response mutantslyl as a suppressor ofABI1-1 inArabidopsis thaliana. Genetics149: 509–521PubMedGoogle Scholar
  80. Sun TP, Gubler F (2004) Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol55: 197–223PubMedCrossRefGoogle Scholar
  81. Swain SM, Singh DP (2005) Tall tales from sly dwarves: Novel functions of gibberellins in plant development. Trends Plant Sci10: 123–129PubMedGoogle Scholar
  82. Swain SM, Tseng TS, Olszewski NE (2001) Altered expression of SPINDLY affects gibberellin response and plant development. Plant Physiol126: 1174–1185PubMedCrossRefGoogle Scholar
  83. Swain SM, Tseng TS, Thornton TM, Gopalraj M, Olszewski N (2002) SPINDLY is a nuclear localized repressor of gibberellin signal transduction expressed throughout the plant. Plant Physiol129: 605–615PubMedCrossRefGoogle Scholar
  84. Tanaka-Ueguchi M, Itoh H, Oyama N, Koshioka M, Matsuika M (1998) Over-expression of a tobacco homeobox gene, NTH15, decreases the expression of a gibberellin biosynthetic gene encoding CA 20-oxidase. Plant J15: 391–400PubMedCrossRefGoogle Scholar
  85. Toyomasu T, Tsuji H, Yamane H, Nakayama M, Yamaguchi I, Murofushi N, Takahashi N, Inoue Y (1993) Light effects on endogenous levels of gibberellins in photoblastic lettuce seeds. J Plant Growth Regul12: 85–90CrossRefGoogle Scholar
  86. Tseng TS, Salome PA, McClung CR, Olszewski NE (2004) SPINDLY and GIGANTEA interact and act inArabidopsis thaliana pathways involved in light responses, flowering, and rhythms in cotyledon movements. Plant Cell16: 1550–1563PubMedCrossRefGoogle Scholar
  87. Tyler L, Thomas SG, Hu J, Dill A, Alonso JM, Ecker JR, Sun TP (2004) DELLA proteins and gibberellin-regulated seed germination and floral development inArabidopsis. Plant Physiol135: 1008–1019PubMedCrossRefGoogle Scholar
  88. Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing Yl, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBERELLIN INSENSITIVE DVVARF1 encodes a soluble receptor for gibberellin. Nature437: 693–698PubMedCrossRefGoogle Scholar
  89. Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, Ashikari M, Iwasaki Y, Kitano H, Matsuoka M (2000) Rice dwarf mutantdi, which is defective in the subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc Natl Acad Sci USA97:11638–11643PubMedCrossRefGoogle Scholar
  90. Ullah H, Chen JG, Wang S, Jones AM (2002) Role of a heterotrimeric G protein in regulation ofArabidopsis seed germination. Plant Physiol129: 897–907PubMedCrossRefGoogle Scholar
  91. Varbanova M, Yamaguchi S, Yang Y, Mckelvey K, Hanada A, Borochov R, Yu F, Jikumaru Y, Ross J, Cortes D, Ma CJ, Noel JP, Mander L, Shulaev V, Kamiya Y, Rodermel S, Weiss D, Pichersky E (2007) Methylation of gibberellins byArabidopsis GAMT1 and GAMT2. Plant Cell19: 32–45PubMedCrossRefGoogle Scholar
  92. Vierstra RD (2003) The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci8: 135–142PubMedCrossRefGoogle Scholar
  93. Wang H, Caruso L, Downie AB, Perry SE (2004) The embryonic MADS domain protein AGAMOUS-like 15 directly regulates expression of a gene encoding an enzyme involved in gibberellin metabolism. Plant Cell16: 1206–1219PubMedCrossRefGoogle Scholar
  94. Wen CK, Chang C (2002)Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. Plant Cell14: 87–100PubMedCrossRefGoogle Scholar
  95. Wu K, Li L, Gage DA, ZeevaartJ AD (1996) Molecular cloning and photoperiod-regulated expression of gibberellin 20-oxidase from long-day plant spinach. Plant Physiol110: 547–554PubMedCrossRefGoogle Scholar
  96. Xu YL, Li L, Gage DA, Zeevaart JAD (1999) Feedback regulation ofCA5 expression and metabolic engineering of gibberellin levels inArabidopsis. Plant Cell11: 927–936PubMedCrossRefGoogle Scholar
  97. Yamaguchi S, Kamiya Y (2000) Gibberellin biosynthesis: Its regulation by endogenous and environmental signals. Plant Cell Physiol41: 251–257PubMedCrossRefGoogle Scholar
  98. Yamaguchi S, Smith MW, Brown RSG, Kamiya Y, Sun TP (1998) Phytochrome regulation and differential expression of gibberellin 3b-hydroxylase genes in germinatingArabidopsis seed. Plant Cell10: 2115–2126PubMedCrossRefGoogle Scholar
  99. Zhang Y, Schwarz S, Saedler H, Huijser P (2007) SPL8, a local regulator in a subset of gibberellin-mediated developmental processes inArabidopsis. Plant Mol Biol63: 429–439PubMedCrossRefGoogle Scholar
  100. Zhao XY, Yu XH, Liu XM, Lin CT (2007) Light regulation of gibberellins metabolism in seedling development. J Integrat Plant Biol49:21–27CrossRefGoogle Scholar
  101. Zhu Y, Nomura T, Xu Y, Zhang Y, Peng Y, Mao B, Hanada A, Zhou H, Wang R, Li P, Zhu X, Mander LN, Kamiya Y, Yamaguchi S, He Z (2006) ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell18: 442–456PubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Korea 2007

Authors and Affiliations

  1. 1.Department of Molecular BiologySejong UniversitySeoulKorea

Personalised recommendations