Journal of Plant Biology

, Volume 50, Issue 6, pp 687–691 | Cite as

Identification of a Molecular Marker and Chromosome Mapping of the 5S rRNA Gene inAllium sacculiferum

  • jun Hyung Seo
  • Byung Ha Lee
  • Bong Bo Seo
  • Ho-Sung Yoon


The 5S rRNA gene in higher eukaryotes is organized into repeated units of tandem array that comprise a conserved 120-bp coding region and a non-transcribed spacer (NTS) of variable length with nucleotides. The allotetraploid genome ofAllium sacculiferum consists of two unknown diploids (2n=32). Analyses have not been successful toward clarifying the origin of each genome due to their similar chromosome morphology and unmatched C-banding patterns. We PCR-amplified the coding and NTS regions of its 5S rRNA genes, cloned them into vectors, and determined their DNA sequences. Interestingly, the aligned sequences of the NTS clones could be divided into two distinctive groups based on the existence of a 3-bp CCT insertion/deletion at the beginning of the NTS region. This feature makes it an important genetic marker for distinguishing the origin of theA. sacculiferum chromosomes. Furthermore, by applying fluorescencein situ hybridization, we located the 5S rRNA gene loci on Chromosomes 5, 7, 8, 9, and 14; their distribution is unique toA. sacculiferum. These data support the idea that one set of this genome has originated from a CCT-containing close relative --A. deltoid-fistulosum -- and that the NTS region may be used as a molecular marker for identifying parental lines for the allotetraploidityof A. sacculiferum.


Allium sacculiferum allotetraploid 5S rRNA molecular marker sequence variation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Appels R, Gerlach WL, Dennis ES, Swift H, Peacock WJ (1980) Molecular and chromosomal organization of DNA sequences coding for the ribisomal RNAs in cereals. Chromosoma78: 293–311CrossRefGoogle Scholar
  2. Baum BR, Bailey LC (2001) The origin of A genome donor of wheats (Triticum: Poaveae) — A prospective based on the sequence variation of the 5S DNA gene units. Genet Resource Crop Evol51: 183–196CrossRefGoogle Scholar
  3. Baum BR, Johnson DA (1999) The 5S rRNA gene in wall barley (Hordeum murinum L sensu lato): Sequence variation among repeat units and relationship to the Y haplome in the genusHordeum (Porceae: Triticeae). Genome42: 852–866CrossRefGoogle Scholar
  4. Brown DD, Wensink PC, Jordan E (1972) A comparison of the ribosomal DNAs ofXenopus laevis andXenopus mulleri: The evolution of tandem genes. J Mol Biol63: 57–72PubMedCrossRefGoogle Scholar
  5. Campbell CS, Wojciechowski MF, Baldwin BG, Alice A, Donoghue MJ (1997) Persistent nuclear ribosomal DNA sequences polymorphism in theAmelanchier agamic complex (Rosaceae). Mol Biol Evol14: 81–90PubMedGoogle Scholar
  6. Crisp MD, Gilmore, SR, Weston PH (1999) Phylogenetic relationships of two anomalous species ofPultenaea (Fabaceae: Mirbelieae), and description of a new genus. Taxon48: 701–704CrossRefGoogle Scholar
  7. Cronn RC, Zhao X, Paterson AH, Wendel JF (1996) Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. J Mol Evol42: 685–705PubMedCrossRefGoogle Scholar
  8. Do CS, Seo BB (2000) Phylogenetic relationships amongAllium subg.Rhizihdeum species based on the molecular variation of 5S rRNA genes. Kor J Biol Sci4: 77–85Google Scholar
  9. Do GS, Seo BB, Ko JM, Lee SH, Park JH, Kim IS, Song SD (1999) Analysis of somaclonal variation through tissue culture and chromosomal localization of rDNA sites by fluorescent in situ hybridization in wildAllium tuberosum and a regenerated variant. Plant Cell Tiss Org Cult57: 113–119CrossRefGoogle Scholar
  10. Dover GA (1982) Molecular Drive: A cohesive mode of species evolution. Nature299: 111–117PubMedCrossRefGoogle Scholar
  11. Flavell RB (1986) Repetitive DNA and chromosomes. Phil Trans Royal Soc London B Biol Sci312: 227–242CrossRefGoogle Scholar
  12. Fritsch RM, Friesen N (2002) Evolution, domestication and taxonomy.In HD Ravinovitch, L Currah, eds,Allium Crop Science: Recent Advances. CAB international, Wallingford, England, pp 5–27Google Scholar
  13. Goldsborough PB, Ellis TH, Cullis CA (1981) Organization of the 5S RNA genes in flax. Nucl Acids Res9: 5895–5904CrossRefGoogle Scholar
  14. Hanahan D (1983) Studies on transformation ofEscherichia coli with plasmids. J Mol Biol166: 557–580PubMedCrossRefGoogle Scholar
  15. Kellogg EA, Appels R (1995) Intraspecific and interspecific variation in 5S RNA genes are decoupled in diploid wheat relatives. Genetics140: 325–343PubMedGoogle Scholar
  16. Klaas M (1998) Applications and impact of molecular markers on evolutionary and diversity studies in the genusAllium. Plant Bleed117: 297–308Google Scholar
  17. Lapitan NLV, Canal MW, Tanksley SD (1989) Somatic chromosome karyotypes of tomato based on in situ hybridization of the TAGI satellite repeat. Genome32: 992–998Google Scholar
  18. Lee SH, Do GS, Seo BB (1999) Chromosomal localization of 5S rRNA gene loci and the implications for relationships within theAllium complex. Chrom Res7: 89–93PubMedCrossRefGoogle Scholar
  19. Leitch IJ, Heslop-Harrison JS (1993) Physical mapping of four sites of 5S ribosomal DNA sequences and one site of the x-amylase 2 gene in barley (Hordeum vulgare). Genome36: 517–523PubMedCrossRefGoogle Scholar
  20. Lewin B (2004) Genes III. Prentice Hall, Pearson Education, Inc., Upper Saddle River, NJ, USAGoogle Scholar
  21. Liu ZL, Zhang D, Wang XQ, Ma XF, Wang XR (2003) Intragenomic and interspecific 5S rDNA sequence variation in five Asian pines. Amer J Bot90: 17–24CrossRefGoogle Scholar
  22. Long EO, David IB (1980) Repetitive genes in eukaryotes. Annu Rev Biochem49: 727–764PubMedCrossRefGoogle Scholar
  23. Maluszynska J, Heslop-Harrison JS (1991) Localization of tandemly-repeated DNA sequences inArabidopsis thaliana. Plant J1: 159–166CrossRefGoogle Scholar
  24. Maughan PJ, Kolano BA, Maluszynska J, Coles ND, Bonifacio A, Rojas J, Coleman CE, Stevens MR, Fairbanks DJ, Parkinson SE, Jellen EH (2006) Molecular and cytological characterization of ribosomal RNA genes inChenopodium quinoa andChenopodium berlandieri. Genome49: 825–839PubMedCrossRefGoogle Scholar
  25. Mes THM, Fritsch RM, Pollner S, Bachmann SK (1999) Evolution of the chloroplast genome and polymorphic ITS regions inAllium subg. Melanocrommyum. Genome42: 237–247PubMedCrossRefGoogle Scholar
  26. Mascia PN, Rubenstein I, Philips RL, Wang AS, Xiang LZ (1981) Localization of the 5S rRNA genes and evidence for diversity in the 5S rRNA region of maize. Gene18: 7–20CrossRefGoogle Scholar
  27. Mukai Y, Endo TR, Grill BS (1990) Physical mapping of the 18S-26S rRNA multigene family in common wheat. J Hered81: 290–295Google Scholar
  28. Mukai Y, Nagahara Y, Yamamoto M (1993) Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome35: 489–495CrossRefGoogle Scholar
  29. Park YK, Park HC, Park CH, Kim NS (2000) Chromosomal localization and sequence variation of 5S rRNA gene in fiveCapsicum species. Mol Cells10: 18–24PubMedCrossRefGoogle Scholar
  30. Reddy AD, Suh SB, Ghaffari R, Singh NJ, Kim DJ, Han JH, Kim KS (2003) Bioinformatics analysis of SARS proteins and molecular dynamics simulated structure of an alpha-helix motif. Bull Kor Chem Soce24: 899–900CrossRefGoogle Scholar
  31. Rogers SO, Bendich AJ (1987) Ribosomal gene in plants, variability in copy number and in the intergenic spacer. Plant Mol eBiol9: 509–520CrossRefGoogle Scholar
  32. Rogers SO, Bendich AJ (1988) Extraction of DNA from plant tissue,In SB Gelvin, RA Schilperoort, eds, Plant Molecular Manual A6. Kluwer Academic Publishers, Dordrecht, pp 1–10Google Scholar
  33. Rogers SO, Honda S, Bendich AJ (1986) Variation in the ribosomal RNA genes among individuals ofVicia fava. Plant Mol Biol6: 339–345CrossRefGoogle Scholar
  34. Samson ML, Wegnez M (1984) The 5S ribosomal genes inDrosophila melanogaster species subgroup. Nucleotide sequence of a 5S unit fromDrosophila simulance andDrosophila teissieri. Nucl Acids Res12: 1003–1014PubMedCrossRefGoogle Scholar
  35. Seo BB, Kim HH (1989) Giemsa C-banded karyotypes in two diploid and two tetraploidAllium species. Kor J Bot32: 181–188Google Scholar
  36. Specht T, Wolters J, Erdmann VA (1990) Compilation of 5S rRNA and 5S rRNA gene sequences. Nucl Acids Res18: 2215–2230PubMedGoogle Scholar
  37. Thompson JD, Higgins DC, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res16: 486–499Google Scholar
  38. Tronin J, Grandemange C, Favre J (1999) Two highly divergent 5S rDNA unit size classes occur in composite tandem array in European larch (Larix decidua Mill.) and Japanese larch (Larix kaempferi (Lamb) Carr.). Genome42: 837–848CrossRefGoogle Scholar
  39. Wendel JF, Schnabel A, Seelanan T (1995) Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci USA92: 280–284PubMedCrossRefGoogle Scholar
  40. Yoon H-S (2003) A floral meristem identity gene influences physiological and ecological aspect of floral organogenesis. J Plant Biol 46(4): 271–276CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Korea 2007

Authors and Affiliations

  • jun Hyung Seo
    • 1
  • Byung Ha Lee
    • 2
  • Bong Bo Seo
    • 1
  • Ho-Sung Yoon
    • 1
  1. 1.Department of BiologyKyungpook National UniversityDaeguKorea
  2. 2.Agro-Biotechnology Education CenterKyungpook National UniversityDaeguKorea

Personalised recommendations