Advertisement

Journal of Plant Biology

, Volume 48, Issue 4, pp 371–379 | Cite as

Characterization of a drought-responsive gene,OsTPS1, identified by the T-DNA Gene-Trap system in rice

  • Soo-Jin Kim
  • Dong-Hoon Jeong
  • Gynheung An
  • Seong-Ryong Kim
Article

Abstract

Trehalose-6-phosphate synthase (TPS) is a key enzyme for trehalose biosynthesis. To understand the function of theTPS gene, we identified the T-DNA insertion in aTPS gene of rice. Line 1C-071-05 had T-DNA inserted at the second intron ofOsTPSI. Its deduced OsTPSI protein shared 52% homology withArabidopsis TPS. Reverse transcriptase-PCR analysis ofOsTPS1 showed thatOsTPS1 is inducible by drought, salt, cold, and ABA. Leaves ofOsTPS1 knockout (KO) plants were more sensitive to drought or cold stress than were the wild types. Furthermore, transgenic rice ofUBI::CBF1 had high expressionOsTPS1 mRNA, suggesting thatOsTPSI is regulated by the CBF/DREB transcription factor. Therefore, we propose thatOsTPSI plays an important role during the abiotic stress response.

Keywords

drought rice T-DNA trehalose-6-phosphate synthase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. An S, Park S, Jeong DH, Lee DY, Kang HG, Yu JH, Hur J, Kim SR, Kim YH, Lee M, Han S, Kim SJ, Yang J, Kim E, Wi SJ, Chung HS, Hong JP, Choe V, Lee HK, Choi JH, Nam J, Kim SR, Park PB, Park KY, Kim WT, Choe S, Lee CB, An C (2003) Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol133: 2040–2047PubMedCrossRefGoogle Scholar
  2. Barbara L, Patrick VD, Johan MT (2001) An unexpected plethora of trehalose biosynthesis genes inArabidopsis thaliana. Trends Plant Sci6: 510–513CrossRefGoogle Scholar
  3. Bianchi G, Gamba A, Limiroli R, Pozzi N, Elster R, Salamini F, Bartels D (1993) The unusual sugar composition in leaves of the resurrection plantMyrothamnus flabellifolia. Physiol Plant87: 223–226CrossRefGoogle Scholar
  4. Blazquez MA, Santos E, Flores CL, Martinez-Zapater JM, Salinas J, Gancedo C (1998) Isolation and molecular characterization of theArabidopsis TPS1 gene, encoding trehalose-6-phosphate synthase. Plant J13: 685–689PubMedCrossRefGoogle Scholar
  5. Blum A (1988) Plant Breeding for Stress Environments. CRC Press, Boca RatonGoogle Scholar
  6. Colaco C, Kampinga J, Roser B (1995) Amorphous stability and trehalose. Science268: 788PubMedCrossRefGoogle Scholar
  7. Crowe JH, Crowe LM, Chapman D (1984a) Preservation of membranes in anhydrobiotic organism: The role of trehalose. Science223: 701–703PubMedCrossRefGoogle Scholar
  8. Crowe JH, Whittam MA, Chapman D, Crowe LM (1984b) Interactions of phospholipids monolayers with carbohydrates. Biochim Biophys Acta769: 151–159PubMedCrossRefGoogle Scholar
  9. Dey MM, Upadhyaya HK (1996) Yield loss due to drought, cold and submergence in Asia,In RE Evenson, RW Herdt, M Hossain, eds, Rice Research in Asia: Progress and Priorities. CAB International, Wallingford, pp 291–303Google Scholar
  10. Drennan PM, Smith MT, Goldsworthy D, van Staden J (1993) The occurrence of trehalose in the leaves of the desiccation-tolerant angiospermMyrothamnus flabellifolia. J Plant Physiol142: 493–496Google Scholar
  11. Eastmond PJ, van Dijken AJH, Spielman M, Kerr A, Tissier AF, Dickinson HG, Jones JDG, Smeekens SC, Graham IA (2002) Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential forArabidopsis embryo maturation. Plant J29: 225–235PubMedCrossRefGoogle Scholar
  12. Garcia AB, Engler JdeA, Iyer S, Gerats T, van Montagu M, Caplan AB (1997) Effects of osmoprotectants upon NaCl stress in rice. Plant Physiol115: 159–169PubMedGoogle Scholar
  13. Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA99: 15898–15903PubMedCrossRefGoogle Scholar
  14. Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochm Biophys Acta990: 87–92Google Scholar
  15. The Genetic Engineering Newsletter (2004) Special Issue 15.http://www.oeko.de/gennews_engl. Google Scholar
  16. Gilmour SJ, Sebolt AM, Salazar MP, Eveerard JD, Thomashow MF (2000) Overexpression of theArabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol124: 1854–1865PubMedCrossRefGoogle Scholar
  17. Goddijn O, Smeekens S (1998) Sensing trehalose biosynthesis in plants. Plant J14: 143–146PubMedCrossRefGoogle Scholar
  18. Goddijn OJM, Verwoerd TC, Voogd E, Krutwagen RW, de Graaf PT, van Dun K, Poels J, Ponstein AS, Damm B, Pen J (1997) Inhibition of trehalose activity enhances trehalose accumulation in transgenic plants. Plant Physiol113: 181–190PubMedCrossRefGoogle Scholar
  19. Iwahashi H, Obuchi K, Fujii S, Komatsu Y (1995) The correlative evidence suggesting that trehalose stabilizes membrane-structure in the yeastSaccharomyces cerevisiae. Cell Mol Biol41: 763–769PubMedGoogle Scholar
  20. Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH, Kim YS, Seo HS, Choi YD, Nahm BH, Kim JK (2003) Expression of a bifunctional fusion of theEscherichia coli genes for trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without sunting growth. Plant Physiol131: 516–524PubMedCrossRefGoogle Scholar
  21. Jang JC, Sheen K (1994) Sugar sensing in higher plants. Plant Cell6: 1665–1679PubMedCrossRefGoogle Scholar
  22. Kaasen I, Falkenberg P, Styrvold OB, Strom AR (1992) Molecular cloning and physical mapping of the otsBA genes, which encode the osmoregulatory trehalose pathway ofEscherichia coli: Evidence that transcription is activated by katF (AppR). J Bacteriol174: 889–898PubMedGoogle Scholar
  23. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress inducible transcription factor. Nat Biotech17: 287–291CrossRefGoogle Scholar
  24. Lee KS, Choi WY, Ko JC, Kim TS, Gregorio GB (2003) Salinity tolerance of japonica and indica rice(Oryza sativa L.) at the seedling stage. Planta216: 1043–1046PubMedGoogle Scholar
  25. Lee SC, Kim JY, Kim SH, Kim SJ, Lee K, Han SK, Choi HS, Jeong DH, An G, Kim SR (2004) Trapping and characterization of cold-responsive genes from T-DNA tagging lines in rice. Plant Sci166: 69–79CrossRefGoogle Scholar
  26. McDougall J, Kaasen I, Strom AR (1993) A yeast gene for trehalose-6-phosphate synthase and its complementation of anEscherichia coli otsA mutant. FEMS Microbiol Lett107: 25–30PubMedCrossRefGoogle Scholar
  27. McElroy D, Rothernberg MM, Wu R (1990) Structural characterization of a rice actin gene. Plant Mol Biol14: 163–171PubMedCrossRefGoogle Scholar
  28. Oscar JM, Goddijn, van Dun K (1999) Trehalose metabolism in plants. Trends Plant Sci4: 315–319CrossRefGoogle Scholar
  29. Roessner U, Willmitzer L, Fernie AR (2000) High-resolution metabolic phenotyping of genetically and environmentally diverse potato tuber systems. Identification of phenocopies. Plant Physiol127: 749–764CrossRefGoogle Scholar
  30. Romero C, Bellës JM, Vayá JL, Serrano R, Culiáńez-Maciá FA (1997) Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: Pleiotropic phenotypes include drought tolerance. Planta201: 293–297CrossRefGoogle Scholar
  31. Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300Arabidopsis genes under drought and cold stresses by using a fulllength cDNA microarray. Plant Physiol13: 61–72Google Scholar
  32. Taji T, Ohsumi C, luchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, andShinozaki K (2002) Important roles of drought and cold-inducible genes for galactinol synthase in stress tolerance inArabidopsis thaliana. Plant J29: 417–426PubMedCrossRefGoogle Scholar
  33. Triglia T, Peterson MG, Kemp DJ (1988) A procedure forin vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucl Acids Res16: 8186PubMedCrossRefGoogle Scholar
  34. Vogel G, Aeschbacher RA, Muller J, Boller J, Wiemken A (1998) Trehalose-6-phosphate phosphatases fromArabidopsis thaliana: Identification by functional complementation of the yeast tps2 mutant. Plant J13: 673–683PubMedCrossRefGoogle Scholar
  35. Zentella R, Mascorro-Gallardo JO, van Dijck P, Folch-Mallol J, Bonini B, van Vaeck C, Gaxiola R, Covarrubias AA, Nieto-Sotelo J, Thevelein JM, Iturriaga G (1999) ASelaginella lepidophylla trehalose-6-phosphate synthase complements growth and stress-tolerance defects in a yeasttps 7 mutant. Plant.Physiol119: 1473–1482PubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Korea 2005

Authors and Affiliations

  • Soo-Jin Kim
    • 1
  • Dong-Hoon Jeong
    • 2
  • Gynheung An
    • 2
  • Seong-Ryong Kim
    • 1
  1. 1.Department of Life ScienceSogang UniversitySeoulKorea
  2. 2.National Research Laboratory of Plant Functional Genomics, Department of Life SciencePohang University of Science and TechnologyPohangKorea

Personalised recommendations