Journal of Electronic Materials

, Volume 20, Issue 12, pp 1109–1115 | Cite as

Growth and characterization of indium arsenide thin films

  • D. L. Partin
  • L. Green
  • D. T. Morelli
  • J. Heremans
  • B. K. Fuller
  • C. M. Thrush


The growth and characterization of indium arsenide films grown on indium phosphide substrates by the metal organic chemical vapor deposition (MOCVD) process is reported. Either ethyl dimethyl indium or trimethyl indium were found to be suitable in combination with arsine as source compounds. The highest electron mobilities were observed in films nucleated at reduced growth temperature. Scanning electron microscopy studies show that film nucleation at low temperature prevents thermal etch pits from forming on the InP surface before growth proceeds at an elevated temperature. Electron mobilities as high as 21,000 cm2V−1 sec−1 at 300 K were thus obtained for a film only 3.4 μm thick. This mobility is significantly higher than was previously observed in InAs films grown by MOCVD. From the depth dependence of transport properties, we find that in our films electrons are accumulated near the air interface of the film, presumably by positive ions in the native oxide. The mobility is limited by electrons scattering predominantly from ionized impurities at low temperature and from lattice vibrations and dislocations at high temperature. However, scattering from dislocations is greatly reduced in the surface accumulation layer due to screening by a high density of electrons. These dislocations arise from lattice mismatch and interface disorder at the film-substrate interface, preventing these films from obtaining mobility values of bulk indium arsenide.

Key words

InAs InP transport accumulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Lequesne and T. Schroeder, “Magistor: a novel magnetoresistive speed sensor—design and analysis,” GMR report no. E3-85, May 31, 1988.Google Scholar
  2. 2.
    S. Takaoka, “Recent development of magnetoresistive devices and applications,” Circulars of Electrotechnical Laboratory No. 182, Tokyo (1974).Google Scholar
  3. 3.
    J. Heremans, D. L. Partin, D. T. Morelli, B. K. Fuller and C. M. Thrush, Appl. Phys. Lett.57, 291 (1990).CrossRefADSGoogle Scholar
  4. 4.
    H. M. Manasevit and W. I. Simpson, J. Electrochem. Soc.120, 135 (1973).CrossRefGoogle Scholar
  5. 5.
    B. J. Baliga and S. K. Ghandhi, J. Electrochem. Soc.121, 1642 (1974).CrossRefGoogle Scholar
  6. 6.
    B. J. Baliga and S. K. Ghandhi, J. Electrochem. Soc.121, 1646 (1974).CrossRefGoogle Scholar
  7. 7.
    R. Schneider, K. Huang and B. W. Wessels, The preparation of heteroepitaxial InAs by OMVPE,” presented at the Third Biennial AMVPE Workshop, Brewster, MA, Sept. 21–23, 1987.Google Scholar
  8. 8.
    K. L. Fry, C. P. Kuo, C. A. Larsen, R. M. Cohen, G. B. Stringfellow and A. Melas, J. Electron. Mater.15, 91 (1986).CrossRefADSGoogle Scholar
  9. 9.
    Model GS 3000, Emcore Corp., 35 Elizabeth Ave., Somerset, NJ, 08873.Google Scholar
  10. 10.
    M. S. Abrahams and E. S. Buiocchi, J. Appl. Phys.36, 2855 (1965).CrossRefADSGoogle Scholar
  11. 11.
    J. P. Wiley, in Semiconductors and Semimetals, eds., R. K. Willardson and A. C. Beer, Academic Press, New York, Vol. 10, 1975, p. 91.Google Scholar
  12. 12.
    W. Zawadzki, in Handbook on Semiconductors, ed. T. S. Moss, North Holland, Amsterdam, Vol. 1, 1982, p. 713.Google Scholar
  13. 13.
    B. Podor, Phys. Status Solidi,16, K167 (1966).CrossRefGoogle Scholar
  14. 14.
    L. Salamanca-Riba, A. K. Ballal, D. L. Partin, J. Heremans, L. Green and B. K. Fuller, to be published.Google Scholar
  15. 15.
    D. C. Tsui, Phys. Rev. Lett.24, 303 (1970).CrossRefADSGoogle Scholar
  16. 16.
    H. H. Wieder, Appl. Phys. Lett.25, 206 (1974).CrossRefADSGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 1991

Authors and Affiliations

  • D. L. Partin
    • 1
  • L. Green
    • 1
  • D. T. Morelli
    • 1
  • J. Heremans
    • 1
  • B. K. Fuller
    • 1
  • C. M. Thrush
    • 1
  1. 1.Phys. Dept.General Motors Res. Lab.Warren

Personalised recommendations