Ricerca in clinica e in laboratorio

, Volume 15, Issue 2, pp 105–112 | Cite as

Microfilament organization in human platelets

  • Emanuela Maioli
  • Adriana Pacini
  • Antonio Viti


Morphological and biochemical studies suggest that actin in human platelets polymerizes from monomers or oligomers into long filaments more tightly structured in activated than in resting platelets. The polymerization and reorganization of actin filaments are regulated by cellular proteins. Profilin prevents actin polymerization by forming tight complexes with monomeric actin; gelsolin acts both severing filaments and inhibiting their elongation by capping at the barded end; other actin-binding proteins nucleate polymerization and cross-link actin filaments into networks or bundles. The changes in the actin assembly state, which are under the control of calcium, seem essential for pseudopodal formation. Other platelet processes, such as granule centralization and contractile gel formation, are due to calcium-dependent actin-myosin interaction. In addition, Ca++ seems to inhibit through calmodulin the binding of caldesmon to actin, allowing actin linkage to myosin in a ‘flip-flop’ fashion.


Actin assembly state Actin-binding proteins Actin-myosin interaction Caldesmon Calmodulin Platelets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adelstein R. S., Conti M. A.: Phosphorylation of platelet myosin increases actin activation of myosin ATPase activity — Nature (Lond.)256, 597, 1975.CrossRefGoogle Scholar
  2. 2.
    Bennett J. S., Vilaire G. T., Cines D. B.: Identification of the fibrinogen receptor on human platelets by photoaffinity labeling — J. biol. Chem.257, 8049, 1982.PubMedGoogle Scholar
  3. 3.
    Bennett V.: Immunoreactive forms of human erythrocyte ankyrin present in diverse cells and tissues — Nature (Lond.)281, 597, 1979.CrossRefGoogle Scholar
  4. 4.
    Boyles J. K.: A modified fixation for the preservation of microfilaments in cells and isolated F-actin — J. Cell Biol.95, 287a, 1982. (Abstract).Google Scholar
  5. 5.
    Carlosson L., Markey F., Blinkstad L., Persson T., Lindberg U.: Reorganization of actin in platelets stimulated by thrombin as measured by the DNase I inhibition assay — Proc. nat. Acad. Sci. (Wash.)76, 6376, 1979.CrossRefGoogle Scholar
  6. 6.
    Carlsson L., Nyström L. E., Lindberg U., Kannen K. K., Cid-Dresdner H., Lovgren S., Jornvall H.: Crystallization of a non-muscle actin — J. molec. Biol.105, 353, 1976.PubMedCrossRefGoogle Scholar
  7. 7.
    Carroll R. C., Butler R. G., Morris P. A., Gerrard J. M.: Separable assembly of platelet pseudopodal and contractile cytoskeletons — Cell30, 385, 1982.PubMedCrossRefGoogle Scholar
  8. 8.
    Carroll R. C., Gerrard J. M.: Phosphorylation of platelet actin-binding protein during platelet activation — Blood59, 466, 1982.PubMedGoogle Scholar
  9. 9.
    Casella J. F., Flanagan M. D., Lin S.: Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change — Nature (Lond.)293, 302, 1981.CrossRefGoogle Scholar
  10. 10.
    Cheung W. Y.: Calmodulin plays a pivotal role in cellular regulation — Science207, 19, 1980.PubMedCrossRefGoogle Scholar
  11. 11.
    Cohen I., Gerrard J. M., Bergman R. N., White J. G.: The role of contractile filaments in platelet activation. In:Peeters H. H. (Ed.): Protides of the biological fluids. Pergamon Press, Oxford, 1979; p. 555.Google Scholar
  12. 12.
    Conti M. A., Adelstein R. S.: Phosphorylation by cyclic adenosine 3′:5′-monophosphate-dependent protein kinase regulates myosin light chain kinase — Fed. Proc.39, 1569, 1980.PubMedGoogle Scholar
  13. 13.
    Daniel J. L., Molish I. R., Holmsen H.: Myosin phosphorylation in intact platelets — J. biol. Chem.256, 7510, 1981.PubMedGoogle Scholar
  14. 14.
    Fox J. E. B., Phillips D. R.: Polymerization and organization of actin filaments within platelets — Semin. Haematol.20, 243, 1983.Google Scholar
  15. 15.
    Gonnella P. A., Nachmias V. T.: Platelet activation and mirofilament bundling — J. Cell Biol.89, 146, 1981.PubMedCrossRefGoogle Scholar
  16. 16.
    Harris H. E., Weeds A. G.: Platelet actin: subcellular distribution and association with profilin — FEBS Letters90, 84, 1978.PubMedCrossRefGoogle Scholar
  17. 17.
    Hartwig J.H., Stossel T. P.: Isolation and properties of actin, myosin and a new actin-binding protein in rabbit alveolar macrophages — J. biol. Chem.250, 5696, 1975.PubMedGoogle Scholar
  18. 18.
    Hartwig J. H., Stossel T. P.: Structure of macrophage actin-binding protein molecules in solution and interacting with actin filaments — J. molec. Biol.145, 563, 1981.PubMedCrossRefGoogle Scholar
  19. 19.
    Hartwig J. H., Tyler J., Stossel T. P.: Actin-binding protein promotes the bipolar and perpendicular branching of actin filaments — J. Cell Biol.87, 841, 1980.PubMedCrossRefGoogle Scholar
  20. 20.
    Hathaway D. R., Adelstein R. S.: Human platelet myosin light chain kinase requires the calcium-binding protein calmodulin for activity — Proc. nat. Acad. Sci. (Wash.)76, 1653, 1979.CrossRefGoogle Scholar
  21. 21.
    Hausner H., Dawson R. M. C.: The displacement of calcium ions from phospholipid monolayers by pharmacologically active and other organic bases — Biochem. J.109, 909, 1968.Google Scholar
  22. 22.
    Ishikawa H., Bischoff R., Holzer H.: Formation of arrow-head complexes with heavy meromyosin in a variety of cell types — J. Cell Biol.43, 312, 1969.PubMedCrossRefGoogle Scholar
  23. 23.
    Jennings L. K., Fox J. E. B., Edwards H. H., Phillips D. R.: Changes in the cytoskeletal structure of human platelets following thrombin activation — J. biol. Chem.256, 6927, 1981.PubMedGoogle Scholar
  24. 24.
    Kakiuchi S., Soubue K.: Control of the cytoskeleton by calmodulin and calmodulin-binding proteins — Trends Biochem. Sci.8, 59, 1983.CrossRefGoogle Scholar
  25. 25.
    Korn E. D.: Actin polymerization and its regulation by proteins from non-muscle cells — Physiol. Rev.62, 672, 1982.PubMedGoogle Scholar
  26. 26.
    Lewis W. G., Cote G. P., Mak A. K., Smille L. B.: Amino acid sequence of equine platelet tropomyosin — FEBS Letters156, 269, 1983.PubMedCrossRefGoogle Scholar
  27. 27.
    Lind S. E., YIn H. L., Stossel T. P.: Human platelets contain gelsolin — J. clin. Invest.69, 1384, 1982.PubMedCrossRefGoogle Scholar
  28. 28.
    Low P. S., Lloyd D. H., Stein T. M., Rogers J. A. III: Calcium displacement by local anesthestics — J. biol. Chem.254, 4119, 1979.PubMedGoogle Scholar
  29. 29.
    Markey F., LIndberg U., Eriksson L.: Human platelets contain profilin, a potential regular of actin polymerisability — FEBS Letters88, 75, 1978.PubMedCrossRefGoogle Scholar
  30. 30.
    Nachmias V. T.: Cytoskeleton of human platelets at rest and after spreading — J. Cell Biol.86, 795, 1980.PubMedCrossRefGoogle Scholar
  31. 31.
    Nachmias V. T., Sullender J. S., Asch A.: Shape and cytoplasmic filaments in control and lidocaine-treated human platelets — Blood50, 39, 1977.PubMedGoogle Scholar
  32. 32.
    Nachmias V. T., Sullender J. S., Fallon J. R.: Effects of local anesthetics on human platelets: filopodial suppression and endogenous proteolysis — Blood53, 63, 1979.PubMedGoogle Scholar
  33. 33.
    Phillips D. R., Agin P. P.: Platelet membrane defects in Glanzmann’s thrombasthenia; evidence for decreased amounts of two major glycoproteins — J. clin. Invest.60, 535, 1977.PubMedCrossRefGoogle Scholar
  34. 34.
    Phillips D. R., Jennings L. K., Edwards H. H.: Identification of membrane proteins mediating the interaction of human platelets — J. Cell Biol.86, 77, 1980.PubMedCrossRefGoogle Scholar
  35. 35.
    Pollard T. D., Craig S. W.: Mechanism of actin polymerization — Trends Biochem. Sci.7, 55, 1982.CrossRefGoogle Scholar
  36. 36.
    Rosemberg S., Stracher A., Detwiler T. C., Lucas R. C.: Actin-binding protein regulates the assembly of platelet microfilaments — Fed. Proc.37, 1790, 1978.Google Scholar
  37. 37.
    Rosemberg S., Stracher A., Lucas R. C.: Isolation and characterization of actin and actin-binding protein from human platelets — J. Cell Biol.91, 201, 1981.CrossRefGoogle Scholar
  38. 38.
    Rotman A., Heldman J., Linder S.: Association of membrane and cytoplasmic proteins with the cytoskeleton in blood platelets — Biochemistry21, 1713, 1982.PubMedCrossRefGoogle Scholar
  39. 39.
    Soubue K., Muramoto Y., Fujita M., Kakiuchi S.: Purification of a calmodulin-binding protein from chicken gizzard that interacts with F-actin — Proc. nat. Acad. Sci. (Wash.)78, 5652, 1981.CrossRefGoogle Scholar
  40. 40.
    Stracher A., Qingq Z., Lawrence J., Rosemberg S.: Role of phosphorylation in the regulation of platelet cytoskeletal formation — Fed. Proc.41, 657, 1982. (Abstract).Google Scholar
  41. 41.
    Truglia J. A.,Stracher A.,Lucas R. C.: Proteolysis of human platelet cytoskeleton by endogenous Ca++-dependent protease — Fed. Proc.38, 1262a, 1979. (Abstract).Google Scholar
  42. 42.
    Tuszynski G. P., Kornecki E., Cierniewski C., Knight L., Koshy A., Srivastava S., Niewiarowski S., Walsh P. N.: Association of fibrin with the platelet cytoskeleton — J. biol. Chem.259, 5247, 1984.PubMedGoogle Scholar
  43. 43.
    Yin H. L., Stossel T. P.: Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein — Nature (Lond.)281, 583, 1979.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Emanuela Maioli
    • 1
  • Adriana Pacini
    • 1
  • Antonio Viti
    • 2
  1. 1.Istituto di Fisiologia GeneraleUniversità degli Studi di SienaItaly
  2. 2.Istituto di Fisiologia GeneraleUniversità degli Studi di SienaItaly

Personalised recommendations