Cardiovascular Drugs and Therapy

, Volume 5, Issue 2, pp 481–488 | Cite as

Effect of a bradycardic agent on the isolated blood-perfused canine heart

  • Jochen D. Schipke
  • Yasuhiko Harasawa
  • Seiryo Sugiura
  • Joe Alexander
  • Daniel Burkhoff
Experimental Studies


Bradycardic agents could limit the consequences of myocardial ischemia via two mechanisms: by decreasing myocardial oxygen demand (MVO2) and by increasing diastolic coronary blood flow (CBF). We investigated whether the benzazepinon UL-FS 49 affects only sinus node cells or also smooth muscle and/or myocardial cells. To avoid confounding interactions with the periphery, we performed experiments on 11 isolated, blood-perfused canine hearts. Injection of UL-FS 49 (1 mg/kg i.c.) significantly reduced heart rate (HR) from 104 ± 7 to 93 ± 7 min−1 (mean ± SEM) and increased stroke volume (n = 6: 9.8 ± 1.1 vs. 13.2 ± 1.6 ml), so that cardiac output remained unchanged (n = 6: 1.1 ± 0.1 vs. 1.2 ± 0.1 1/min). The contractile state, assessed by isovolumic peak systolic pressure, was unaltered by UL-FS 49 (n = 5: 72 ± 6 vs. 72 ± 6 mmHg). At a constant coronary arterial pressure (CAP) of 80 mmHg, mean CBF was slightly decreased (102 ± 11 vs. 97 ± 10 ml/tmin · 100 g]) by UL-FS 49, such that mean coronary resistance remained unchanged (0.9 ± 0.1 vs 1.0 ±0.1 mmHg · min · 100 g/ml). The slight decreases in arteriovenous oxygen content difference (n = 6: 6.6 ± 0.7 vs. 6.5 ± 0.7 ml/100 ml) and in CBF lead to a calculated, significant decrease in MVO2 (n = 6: 6.9 ± 0.5 vs. 6.0 ± 0.4 ml · 100 g/min). In conclusion, UL-FS 49 at the dose used decreases MVO2 by reducing HR in isolated canine hearts. In the absence of negative inotropic and vasodilating effects, cardiac output is maintained via increased stroke volume, and CAP will likely be preserved in situ. Thus, this specific bradycardic agent could be useful in treating ischemic myocardial disease.

Key Words

canine heart cardiac output bradycardic agent UL-FS 49 coronary resistance myocardial oxygen consumption left ventricular contractility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Braunwald E. Control of myocardial oxygen consumption. Physiological and clinical considerations.Am J Cardiol 1971;27:416–432.PubMedCrossRefGoogle Scholar
  2. 2.
    Gillam PMS. Use of propranolol in angina pectoris.Br Med J 1965;2:337–339.PubMedCrossRefGoogle Scholar
  3. 3.
    Dagenais GR, Pitt B, Ross RS. Exercise tolerance in patients with angina pectoris. Daily variation and effects of erythrityl tetranitrate, propranolol and alprenolol.Am J Cardiol 1971;28:10–16.PubMedCrossRefGoogle Scholar
  4. 4.
    Henry PD. Comparative pharmacology of calcium antagonists: Nifedipine, verapamil and diltiazem.Am J Cardiol 1980;46:1047–1058.PubMedCrossRefGoogle Scholar
  5. 5.
    Josephson MA, Singh BN. Use of calcium antagonists in ventricular dysfunction.Am J Cardiol 1985;55:81B-85B.PubMedCrossRefGoogle Scholar
  6. 6.
    Vatner SF, Hintze TH. Effects of a calcium-channel antagonist on large and small coronary vessels in conscious dogs.Circulation 1982;66:579–587.PubMedGoogle Scholar
  7. 7.
    Nayler W, Dillon JS, Daly MJ, Cellular sites of action of calcium antagonists and β-adrenoceptor blockers. In: Opie LH, ed.Calcium antagonists and cardiovascular disease. New York: Raven Press, 1984:181–192.Google Scholar
  8. 8.
    Heusch G, Deussen A, Schipke J, et al. α1 and α2-adrenoceptor-mediated vasoconstriction of large and small canine coronary arteries in vivo.J Cardiovasc Pharmacol 1984;6:961–968.PubMedGoogle Scholar
  9. 9.
    Schamhardt HC, Verdouw PD, Saxena PR. Improvement of perfusion and function of ischemic porcine myocardium after reduction of heart rate by alinidine.J Cardiovasc Pharmacol 1981;3:728–738.PubMedCrossRefGoogle Scholar
  10. 10.
    Dämmgen JW, Lamping KA, Gross GJ. Actions of two new bradycardic agents.J Cardiovasc Pharmacol 1985;7:71–79.PubMedCrossRefGoogle Scholar
  11. 11.
    Kobinger W, Lillie C. Cardiovascular characterization of UL-FS 49, 1,3,4,5,-tetrahydro-7,8-dimethoxy-3-[3-[[2-(3,4-dimethoxyophenyl)ethyl]methylimino]-propyl]-2H-3-benzazepin-2-on hydrochloride, a new “specific bradycardic agent.”Eur J Pharmacol 1984;104:9–18.PubMedCrossRefGoogle Scholar
  12. 12.
    Gruber R, Lumper G, Silberszac A, et al. Effects of 1,3,4,5, — tetrahydro — 7,8 — dimethoxy — 3 — [3 — [[2 — (3,4 — dimethoxyophenyl)ethyl]methylimino]-propyl]-2H-3-benza-zepin-2-onhydrochloride (UL-FS 49 Cl) on the action potential of the guinea pig heart (abstr).Naunyn Schmiedebergs Arch Pharmacol Supply 1983;324:R32.Google Scholar
  13. 13.
    Krumpl G, Schneider W, Raberger G. Can exercise-induced regional contractile dysfunction be prevented by selective bradycardic agents?Naunyn Schmiedebergs Arch Pharmacol 1986;334:540–543.PubMedCrossRefGoogle Scholar
  14. 14.
    Suga H, Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle.Circ Res 1974;35:117–126.PubMedGoogle Scholar
  15. 15.
    Moir TW, Driscol TE, Eckstein RW. Thebesian drainage in the left heart of the dog.Circ Res 1963;14:245–249.Google Scholar
  16. 16.
    Shepard AP, Burgar CG. A solid state arterio-venous oxygen difference analyzer for flowing whole blood.Am J Physiol 1977;232:437–440.Google Scholar
  17. 17.
    Suga H, Sagawa K. End-diastolic and end-systolic ventricular volume clamper for isolated canine heart.Am J Physiol 1977;233:H718-H722.PubMedGoogle Scholar
  18. 18.
    Sunagawa K, Burkhoff D, Lim KO, et al. Impedance loading servo pump system for excised canine ventricle.Am J Physiol 1982;243:H346-H350.PubMedGoogle Scholar
  19. 19.
    Burkhoff D, Alexander J Jr., Schipke J. Assessment of Windkessel as a model of aortic impedance.Am J Physiol 1988;255:H742-H753.PubMedGoogle Scholar
  20. 20.
    Guth BD, Heusch G, Seitelberger R, et al. Elimination of exercise-induced regional myocardial dysfunction by a bradycardic agent in dogs with chronic coronary stenosis.Circulation 1987;75:661–669.PubMedGoogle Scholar
  21. 21.
    Sagawa K. The ventricular pressure-volume diagram revisited.Circ Res 1978;43:677–687.PubMedGoogle Scholar
  22. 22.
    Suga H, Hisano R, Goto O, et al. Effect of positive inotropic agents on the relation between oxygen consumption and systolic pressure-volume area in canine left ventricle.Circ Res 1983;53:306–318.PubMedGoogle Scholar
  23. 23.
    Schipke JD, Burkhoff D, Alexander J Jr., et al. Effect of nisoldipine on coronary resistance, contractility and oxygen consumption of the isolated blood-perfused canine ventricle.J Pharmacol Exp Therap 1988;244:1000–1004.Google Scholar
  24. 24.
    Gibbs CL. Cardiac energetics.Physiol Rev 1978;58: 174–254.PubMedGoogle Scholar
  25. 25.
    Mason DT, Braunwald E, Covell JW, et al. Assessment of myocardial contractility: The relation between the rate of pressure rise and ventricular pressure during isovolumic systole.Circulation 1971;44:47–58.PubMedGoogle Scholar
  26. 26.
    Maughan WL, Sunagawa K, Burkhoff D, et al. Effect of heart rate on the canine end-systolic pressure-volume relationship.Circulation 1985;72:654–659.PubMedGoogle Scholar
  27. 27.
    Mahler F, Ross J Jr., O’Rourke RA, et al. Effects of changes in preload, afterload and inotropic state on ejection and isovolume phase measures of contractility in the conscious dog.Am J Cardiol 1975;35:626–634.PubMedCrossRefGoogle Scholar
  28. 28.
    Winbury MM, Howe BB, Hefner MA. Effect of nitrates and other coronary dilators on large and small coronary vessels: An hypothesis for the mechanism of action of nitrates.J Pharmacol Exp Ther 1969;168:70–95.PubMedGoogle Scholar
  29. 29.
    Falsetti HL, Carroll RJ, Marcus ML. Temporal heterogeneity of myocardial blood flow in anesthetized dogs.Circulation 1975;52:848–853.PubMedGoogle Scholar
  30. 30.
    Warltier DC, Gross GJ, Brooks HL. Coronary steal-induced increase in myocardial infarct size after pharmacological coronary vasodilation.Am J Cardiol 1980;46:83–90.PubMedCrossRefGoogle Scholar
  31. 31.
    Raff WK, Kosche F, Lochner W. Extravasale Komponente des Coronarwiderstandes und der Coronardurchblutung bei steigendem enddiastolischem Druck.Pfügers Arch 1971; 327:225–233.CrossRefGoogle Scholar
  32. 32.
    Domenech RJ, De La Prida. Mechanical effects of heart contraction on coronary flow.Circ Res 1975;9:509–514.Google Scholar
  33. 33.
    Klocke FJ. Measurements of coronary flow reserve: Defining pathophysiology versus making decisions about patient care.Circulation 1987;76:1183–1189.PubMedGoogle Scholar
  34. 34.
    Buckberg GD, Fixier DE, Archie JP, et al. Variable effects of heart rate on phasic and regional left ventricular muscle blood flow in anesthetized dogs.Cardiovasc Res 1975;9: 1–11.PubMedCrossRefGoogle Scholar
  35. 35.
    Conolly ME, Kersting F, Dollery CT. The clinical pharmacology of beta-adrenergic blocking drugs.Prog Cardiovasc Dis 1976;19:203–249.PubMedCrossRefGoogle Scholar
  36. 36.
    Hugenholtz PG, Verdouw PD, de Jong JW, et al. Nifedipine for angina and acute myocardial ischemia. In: Opie LH, ed.Calcium antagonists and cardiovascular disease. New York: Raven Press, 1984:237–256.Google Scholar
  37. 37.
    Gould KL, Lipscomb K, Calvert C. Compensatory changes of the distal coronary vascular bed during progressive coronary constriction.Circulation 1975;51:1085–1094.PubMedGoogle Scholar
  38. 38.
    Heusch G, Guth BD, Seitelberger R, et al. Attenuation of exercise-induced myocardial ischemia in dogs with recruitment of coronary vasodilator reserve by nifedipine.Circulation 1987;75:482–490.PubMedGoogle Scholar
  39. 39.
    Reimer KA, Jennings RB. The “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow.Lab Invest 1979;40:633–644.PubMedGoogle Scholar
  40. 40.
    Lichtlen PR, Engel HJ, Rafflenbeul W. Calcium entry blockers, especially nifedipine, in angina pectoris of effort: Possible mechanisms and clinical implications. In: Opie LH, ed.Calcium antagonists and cardiovascular disease. New York: Raven Press, 1984:221–236.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Jochen D. Schipke
    • 1
  • Yasuhiko Harasawa
    • 2
  • Seiryo Sugiura
    • 2
  • Joe Alexander
    • 2
  • Daniel Burkhoff
    • 2
  1. 1.Dept. of Experimental SurgeryUniversität DüsseldorfDüsseldorfFRG
  2. 2.Dept. of Biomedical Engineering, School of MedicineThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations