Skip to main content
Log in

Evaluation of central metabolism based on a genomic database ofSynechocystis PCC6803

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Cyanobacteria produce industrially important secondary metabolites such as lipopeptide, oligosaccharide, fatty acid (esp. sulfolipid),etc. Among them,Synechocystis PCC6803 is the first strain with a publicly available full genome sequence, as of 1996, and is one of the most extensively studied photosynthetic microorganisms. Using this genomic information, the central metabolism ofSynechocystis PCC6803 was reconstructed, including photosynthesis, oxidative phosphorylation, glycolysis, pyruvate metabolism, TCA cycle, carbon fixation, and transport system. Each biochemical reaction was carefully incorporated into the model, taking into consideration the metabolite formula, stoichiometry, charge balance, and thermodynamic properties using information from genomic and metabolic databases as well as biochemical literature. The metabolic flux of the model was calculated using flux balance analysis according to its cultivation with various carbon sources. The results of simulation were in accordance with experimental data, which suggests that the central metabolism model can properly estimate the behavior ofSynechocystis PCC6803. This model would aid in the understanding of the whole cell metabolism ofSynechocystis PCC6803, the first effort of its kind for photosynthetic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sze, P. (2003)A Biology of the Algae, 3rd ed, pp. 21–38. McGraw-Hill Companies, Boston, MA, USA

    Google Scholar 

  2. Burja, A. M., B. Banaigs, E. Abou-Mansour, J. Grant Burgess, and P. C. Wright (2001) Marine cyanobacteria-a prolific source of natural products.Tetrahedron 57: 9347–9377.

    Article  CAS  Google Scholar 

  3. Burja, A. M., S. Dhamwichukorn, and P. C. Wright (2003) Cyanobacterial postgenomic research and systems biology.Trends Biotechnol. 21: 504–511.

    Article  CAS  Google Scholar 

  4. Choi, S.-L., I. S. Suh, and C.-G. Lee (2003) Lumostatic operation of bubble column photobioreactors forHaematococcus pluvialis cultures using a specific light uptake rate as a control parameter.Enzyme Microb. Technol. 33: 403–409.

    Article  CAS  Google Scholar 

  5. Fazeli M. R., H. Tofighi, N. Samadi, and H. Jamalifar (2006) Effects of salinity on β-carotene production byDunaliella tertiolecta DCCBC26 isolated from the Urmia salt lake, north of Iran.Bioresour. Technol. 97: 2453–2456.

    CAS  Google Scholar 

  6. Kim, Z. H., S.-H. Kim, H.-S. Lee, and C.-G. Lee (2006) Enhanced production of astaxanthin by flashing light usingHaematococcus pluvialis.Enzyme Microb. Technol. 39: 414–419.

    Article  CAS  Google Scholar 

  7. Lee, H.-S., M.-W. Seo, Z. H. Kim, and C.-G. Lee (2006) Determining the best specific light uptake rates for the lumostatic cultures in bubble column photobioreactors.Enzyme Microb. Technol. 39: 447–452.

    Article  CAS  Google Scholar 

  8. Suh, I. S., H.-N. Joo, and C.-G. Lee (2006) A novel double-layered photobioreactor for simultaneousHaematococcus pluvialis cell growth and astaxanthin accumulation.J. Biotechnol. 125: 540–546.

    Article  CAS  Google Scholar 

  9. Misawa, N., and H. Shimada (1998) Metabolic engincering for the production of carotenoids in non-carotenogenic bacteria and yeasts.J. Biotechnol. 59: 169–181.

    Article  CAS  Google Scholar 

  10. Duarte, N. C., M. J. Herrgard, and B. O. Palsson (2004) Reconstruction and validation ofSaccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model.Genome Res. 14: 1298–1309.

    Article  CAS  Google Scholar 

  11. Raghunathan, A., N. D. Price, M. Y. Galperin, K. S. Makarova, S. Purvine, A. F. Picone, T. Cherny, T. Xie, T. J. Reilly, R. Munson, Jr., R. E. Tyler, B. J. Akerley, A. L. Smith, B. O. Palsson, and E. Kolker (2004)In silico metabolic model and protein expression ofHaemophilus influenzae strain Rd KW20 in rich medium.Omics 8: 25–41.

    CAS  Google Scholar 

  12. Reed, J. L., T. D. Vo, C. H. Schilling, and B. O. Palsson (2003) An expanded genome-scale model ofEscherichia coli K-12 (iJR904 GSM/GPR).Genome Biol. 4: R54.

    Article  Google Scholar 

  13. Thiele, I., T. D. Vo, N. D. Price, and B. O. Palsson (2005) Expanded metabolic reconstruction ofHelicobacter pylori (iIT341 GSM/GPR): anin silico genomescale characterization of single- and double-deletion mutants.J. Bacteriol. 187: 5818–5830.

    Article  CAS  Google Scholar 

  14. Lee, S. Y., H. M. Woo, D.-Y. Lee, H. S. Choi, T. Y. Kim, and H. Yun (2005) Systems-level analysis of genome-scalein silico metabolic models using MetaFlux-Net.Biotechnol. Bioprocess Eng. 10: 425–431.

    Article  CAS  Google Scholar 

  15. Kim, J.-D., and C.-G. Lee (2005) Systemic optimization of microalgae for bioactive compound production.Biotechnol. Bioprocess Eng. 10: 418–424.

    Article  CAS  Google Scholar 

  16. Jin, J. H., and J. Lee (2005)In silico analysis of lactic acid secretion metabolism through the top-down approach: Effect of grouping in enzyme kinetics.Biotechnol. Bioprocess Eng. 10: 462–469.

    Article  CAS  Google Scholar 

  17. Shastri, A. A., and J. A. Morgan (2005) Flux balance analysis of photoautotrophic metabolism.Biotechnol. Prog. 21: 1617–1626.

    Article  CAS  Google Scholar 

  18. Varma, A. and B. O. Palsson (1993) Metabolic capabilities ofEscherichia coli I. Synthesis of biosynthetic precursors and cofactors.J. Theor. Biol. 165: 477–502.

    Article  CAS  Google Scholar 

  19. Varma, A. and B. O. Palsson (1993) Metabolic capabilities ofEscherichia coli. II. Optimal growth patterns.J. Theor. Biol. 165: 503–522.

    Article  CAS  Google Scholar 

  20. Allen, J. (2002) Photosynthesis of ATP-electrons, proton pumps, rotors, and poise.Cell 110: 273–276.

    Article  CAS  Google Scholar 

  21. Gregory, R. P. F. (1989)Biochemistry of Photosynthesis. John Wiley & Sons, Chichester, NY, USA.

    Google Scholar 

  22. Hervas, M., J. A. Navarro, and M. A. De La Rosa (2003) Electron transfer between membrane complexes and soluble proteins in photosynthesis.Acc. Chem. Res. 36: 798–805.

    Article  CAS  Google Scholar 

  23. Seelert, H., A. Poetsch, N. A. Dencher, A. Engel, H. Stahlberg, and D. J. Muller (2000) Structural biology, Proton-powered turbine of a plant motor.Nature 405: 418–419.

    Article  CAS  Google Scholar 

  24. Kurisu, G., H. Zhang, J. L. Smith, and W. A. Cramer (2003) Structure of the cytochrome b6f complex of oxygenic photosynthesis: Tuning the cavity.Science 302: 1009–1014.

    Article  CAS  Google Scholar 

  25. Nelson, N. and C. F. Yocum (2006) Structure and function of photosystems I and II.Annu. Rev. Plant Biol. 57: 521–565.

    Article  CAS  Google Scholar 

  26. Munekage, Y., M. Hojo, J. Meurer, T. Endo, M. Tasaka, and T. Shikanai (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection inArabidopsis.Cell 110: 361–371.

    Article  CAS  Google Scholar 

  27. Knowles, V. L. and W. C. Plaxton (2003) From genome to enzyme: analysis of key glycolytic and oxidative pentose-phosphate pathway enzymes in the cyanobacteriumSynechocystis sp. PCC 6803.Plant Cell Physiol. 44: 758–763.

    Article  CAS  Google Scholar 

  28. Joset, F., T. Buchou, C.-C. Zhang, and R. Jeanjean (1988) Physiological and genetic analysis of the glucose-fructose permeation system in twoSynechocystis species.Arch. Microbiol. 149: 417–421.

    Article  CAS  Google Scholar 

  29. Stal, L. J. and R. Moezelaar (1997) Fermentation in cyanobacteria.FEMS Microbiol. Rev. 21: 179–211.

    CAS  Google Scholar 

  30. Tamoi, M., T. Ishikawa, T. Takeda, and S. Shigeoka (1996) Molecular characterization and resistance to hydrogen peroxide of two fructose-1.6-bisphosphatases fromSynechococcus PCC 7942.Arch. Biochem. Biophys. 334: 27–36.

    Article  CAS  Google Scholar 

  31. Tamoi, M., A. Murakami, T. Takeda, and S. Shigeoka (1998) Acquisition of a new type of fructose-1,6-bisphosphatase with resistance to hydrogen peroxide in cyanobacteria: molecular characterization of the enzyme fromSynechocystis PCC 6803.Biochim. Biophys. Acta 1383: 232–244.

    CAS  Google Scholar 

  32. Scherer, S., E. Sturzl, and P. Boger (1984) Oxygen-dependent proton efflux in cyanobacteria (blue-green algae).J. Bacteriol. 158: 609–614.

    CAS  Google Scholar 

  33. Yang, C., Q. Hua, and K. Shimizu (2002) Metabolic flux analysis inSynechocystis using isotope distribution from 13C-labeled glucose.Metab. Eng. 4: 202–216.

    Article  CAS  Google Scholar 

  34. Anderson, S. L. and L. McIntosh (1991) Light-activated heterotrophic growth of the cyanobacteriumSynechocystis sp. strain PCC 6803: a blue-light-requiring process.J. Bacteriol. 173: 2761–2767.

    CAS  Google Scholar 

  35. Koksharova, O., M. Schubert, S. Shestakov, and R. Cerff (1998) Genetic and biochemical evidence for distinct key functions of two highly divergent GAPDH genes in catabolic and anabolic carbon flow of the cyanobacteriumSynechocystis sp. PCC 6803.Plant Mol Biol. 36: 183–194.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choul-Gyun Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, SJ., Lee, CG. Evaluation of central metabolism based on a genomic database ofSynechocystis PCC6803. Biotechnol. Bioprocess Eng. 12, 165–173 (2007). https://doi.org/10.1007/BF03028644

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03028644

Keywords

Navigation