Biotechnology and Bioprocess Engineering

, Volume 12, Issue 2, pp 140–146 | Cite as

A correlative evaluation of morphology and rheology ofAspergillus terreus during lovastatin fermentation

  • Kamakshi Gupta
  • P. K. Mishra
  • Pradeep SrivastavaEmail author


Lovastatin, a secondary metabolite, was produced by fermentation process usingAspergillus terreus in an internal loop airlift reactor. It is a highly aerobic fermentation process. Biomass concentration and cell morphology were evaluated and observed to contribute significantly to the high viscosity and pseudoplastic non-Newtonian behavior of the broth. Typical morphological changes over 10 days in the fermentation broth were studied. The viscosity increased from the start of the fermentation with an increasing cell mass content, reached to a maximum of 60 N/m2·s at 160 h and then declined after the branching of the hyphae with the formation of arthrospores. Rheological parameters like consistency index and fluidity index were evaluated. The consistency index was observed to increase from 9.8 to 66.85 N/m2, while fluidity index decreased from 0.69 to 0.48 s−1 during 10 days of lovastatin production. A correlation between growth and consistency index of the broth has been evaluated.


lovastatin Aspergillus terreus morphology viscosity consistency index 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Szakács, G., G. Morovján, and R. P. Tengerdy (1998) Production of lovastatin by a wild strain ofAspergillus terreus.Biotechnol. Lett. 20:411–415.CrossRefGoogle Scholar
  2. 2.
    Manzoni, M., S. Bergomi, M. Rollini, and V. Cavazzoni (1999) Production of statins by filamentous fungi.Biotechnol. Lett. 21: 253–257.CrossRefGoogle Scholar
  3. 3.
    Kim, J. H., J. M. Lebeault, and M. Reuss (1983) Comparative study on rheological properties of mycelial broth in filamentous and pelleted forms.Eur. J. Appl. Microbiol. Biotechnol. 18: 11–16.CrossRefGoogle Scholar
  4. 4.
    Sinha, J., J. T. Bae, J. P. Park, C. H. Song, and J. W. Yun (2001) Effect of substrate concentration on broth rheology and fungal morphology during exo-biopolymer production byPaecilomyces japonica in a batch bioreactor.Enzyme Microb. Technol. 29: 392–399.CrossRefGoogle Scholar
  5. 5.
    Gavrilescu, M. and R. Z. Tudose (1997) Hydrodynamics of non-Newtonian liquids in external-loop airlift bioreactors.Bioprocess Eng. 18: 17–26.CrossRefGoogle Scholar
  6. 6.
    Moo-Young, M., B. Halard, D. G. Allen, R. Burrell, and Y. Kawase (1987) Oxygen transfer to mycelial fermentation broths in an airlift fermenter.Biotechnol. Bioeng. 30: 746–753.CrossRefGoogle Scholar
  7. 7.
    Samiee, S. M., N. Moazami, S. Haghighi, F. A. Mohseni, S. Mirdamadi, and M. R. Bakhtiari (2003) Sereening of lovastatin production by filamentous fungi.Iran. Biomed. J. 7: 29–33.Google Scholar
  8. 8.
    Casas López, J. L., J. A. Sánchez Pérez, J. M. Fernández Sevilla, E. M. Rodríguez Porcel, and Y. Chisti (2005) Pellet morphology, culture rheology and lovastatin production in cultures ofAspergillus terreus.J. Biotechnol. 116: 61–77.CrossRefGoogle Scholar
  9. 9.
    Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar.Anal. Chem. 31: 426–428.CrossRefGoogle Scholar
  10. 10.
    Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith (1956) Colorimetric method for determination of sugars and related substances.Anal. Chem. 28: 350–356.CrossRefGoogle Scholar
  11. 11.
    Kysilka, R. and V. Kren (1993) Determination of Lovastatin (mevinolin) and mevinolinic acid in fermentation liquids.J. Chromatogr. A 630: 415–417.CrossRefGoogle Scholar
  12. 12.
    Friedrich, J., M. Zuzek, M. Bencina, A. Cimerman, A. Strancar, and I. Radez (1995) High-performance liquid chromatographic analysis of mevinolin as mevinolinic acid in fermentation broths.J. Chromatogr. A 704: 363–367CrossRefGoogle Scholar
  13. 13.
    Olsvik, E., K. G. Tucker, C. R. Thomas, and B. Kristiansen (1993) Correlation ofAspergillus niger broth rheological properties with biomass concentration and the shape of mycelial aggregates.Biotechnol. Bioeng. 42: 1046–1052.CrossRefGoogle Scholar
  14. 14.
    Makagiansar, H. Y., P. Ayazi Shamlou, C. R. Thomas, and M. D. Lilly (1993) The influence of mechanical forces on the morphology and penicillin production ofPenicillium chrysogenum.Bioprocess Eng. 9: 83–90.CrossRefGoogle Scholar
  15. 15.
    Tucker, K. G. (1994)Relationship between Mycelial Morphology Biomass Concentrations and Broth Rheology in Submerged Fermentation. Ph.D. Thesis, University of Birmingham, Birmingham, UK.Google Scholar
  16. 16.
    Mishra, P., P. Srivastava, and S. Kundu (2005) A comparative evaluation of oxygen mass transfer and broth viscosity using Cephalosporin-C production as a case strategy.World J. Microbiol. Biotechnol. 21: 525–530.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2007

Authors and Affiliations

  • Kamakshi Gupta
    • 1
  • P. K. Mishra
    • 2
  • Pradeep Srivastava
    • 1
    Email author
  1. 1.School of Biochemical Engineering, Institute of TechnologyBanaras Hindu UniversityVaranasiIndia
  2. 2.Department of Chemical Engineering and Technology, Institute of TechnologyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations