Skip to main content
Log in

Isocitrate dehydrogenase and isocitrate lyase are essential enzymes for riboflavin production inAshbya gossypii

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

For this study, we hypothesized that mitochondrial NAD+-dependent isocitrate dehydrogenase 1 (ICDH1) and isocitrate lyase (ICL1) were important enzymes for riboflavin synthesis in the fungusAshbya gossypii. Here, the genes encoding ICDH1 and ICL1 were disrupted in order to analyze the enzymes' functions on riboflavin production by the fungus. The riboflavin production resulting from these disruptants was markedly decreased compared to the concentration produced by its parental strain when cultured in a rich nutrient medium used to optimize riboflavin production. Furthermore, when comparing the transcription levels of the genes encoding ICDH1 and ICL1, between wild-typeA. gossypii and an itaconate resistant mutant ofA. gossypii obtained by UV irradiation, the mRNA levels in the mutant were 1.8- and 2.0-fold higher than those in the wild-type strain, respectively. These results indicate that ICDH1 and ICL1 are key enzymes for riboflavin synthesis inA. gossypii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stahmann, K. P., J. L. Revuelta, and H. Sculberger (2000) Three biotechnical processes usingAshbya gossypii, Candida famata, orBacillus subtilis compete with chemical riboflavin production.Appl. Microbiol. Biotechnol. 53: 509–516.

    Article  CAS  Google Scholar 

  2. Demain, A. L. (1972) Riboflavin oversynthesis.Annu. Rev. Microbiol. 26: 369–388.

    Article  CAS  Google Scholar 

  3. Dietrich, F. S., S. Voegeli, S. Brachat, A. Lerch, K. Gates, S. Steiner, C. Mohr, R. Pohlmann, P. Luedi, S. Choi, R. A. Wing, A. Flavier, T. D. Gaftney, and P. Philippsen (2004) TheAshbya gossypii geneme as a tool for mapping the ancientSaccharomyces cerevisiae genome.Science 304: 304–307.

    Article  CAS  Google Scholar 

  4. Hermida, L., S. Brachat, S. Voegeli, P. Philippsen, and M. Primig (2005) The Ashbya Genome Database (AGD)—a tool for the yeast community and genome biologists.Nucleic Acids Res. 33: D348-D352.

    Article  CAS  Google Scholar 

  5. Ming, H., A. V. Lara Pizarro, and E. Y. Park (2003) Application of waste activated bleaching earth containing rapeseed oil on riboflavin production in the culture ofAshbya gossypii.Biotechnol. Prog. 19: 410–417.

    Article  CAS  Google Scholar 

  6. Park, E. Y. and H. Ming (2004) Oxidation of rapeseed oil in waste activated bleaching earth and its effect on riboflavin production in culture ofAshbya gossypii.J. Biosci. Bioeng. 97: 59–64.

    CAS  Google Scholar 

  7. Monschau, N., H. Sahm, and K. P. Stahmann (1998) Threonine aldolase overexpression plus threonine supplementation enhanced riboflavin production inAshbya gossypii.Appl. Environ. Microbiol. 64: 4283–4290.

    CAS  Google Scholar 

  8. Forster, C., M. A. Santos, S. Ruffert, R. Kramer, and J. L. Revuelta (1999) Physiological consequence of disruption of theVMAI gene in the riboflavin overproducerAshbya gossypii.J. Biol. Chem. 274: 9442–9448.

    Article  CAS  Google Scholar 

  9. Schlupen, C., M. A. Santos, U. Weber, A. de Graaf, J. L. Revuelta, and K. P. Stahmann (2003) Disruption of theSHM2 gene, encoding one of two serine hydroxymethyl-transferase isoenzymes, reduces the flux from glycine to serine inAshbya gossypii.Biochem. J. 369: 263–273.

    Article  Google Scholar 

  10. Kato, T. and E. Y. Park (2006) Expression of alamine: glyoxylate aminotransferase gene fromSaccharomyces cerevisiae inAshbya gossypii.Appl. Microbiol. Biotechnol. 71: 46–52.

    Article  CAS  Google Scholar 

  11. Przybyla-Zawislak, B., D. M. Gadde, K. Ducharme, and M. T. McCammon (1999) Genetic and biochemical interactions involving tricarboxylic acid cycle (TCA) function using a collection of mutants defective in all TCA cycle genes.Genetics 152: 153–166.

    CAS  Google Scholar 

  12. Cupp, J. R. and L. McAlister-Henn (1991) NAD+-dependent isocitrate dehydrogenase.J. Biol. Chem. 266: 22199–22205.

    CAS  Google Scholar 

  13. Cupp, J. R. and L. McAlister-Henn (1992) Cloning and characterization of the gene encoding the IDH1 subunit of NAD+-dependent isocitrate dehydrogenase fromSaccharomyces cerevisiae.J. Biol. Chem. 267: 16417–16423.

    CAS  Google Scholar 

  14. Fernandez, E., F. Moreno, and R. Rodicio (1992) TheICLI gene fromSaccharomyces cerevisiae.Eur. J. Biochem. 204: 983–990.

    Article  CAS  Google Scholar 

  15. Luttik, M. A., P. Kotter, F. A. Salomons, I. J. van der Klei, J. P. van Dijken, and J. T. Pronk (2000) TheSaccharomyces cerevisiae ICL2 gene encodes a mitochondrial 2-methylisocitrate lyase involved in propionyl-coenzyme A metabolism.J. Bacteriol. 182: 7007–7013.

    Article  CAS  Google Scholar 

  16. Maeting, I., G. Schmidt, H. Sahm, J. L. Revuelta, Y. D. Stierhof, and K. P. Stahmann (1999) Isocitrate lyase ofAshbya gossypii—transcriptional regulation and peroxisomal localization.FEBS Lett. 444: 15–21.

    Article  CAS  Google Scholar 

  17. Park, E. Y., J. H. Zhang, S. Tajima, and L. Dwiarti (2006) Isolation ofAshbya gossypii mutant for an improved riboflavin production targeting for biorefinery technology.J. Appl. Microbiol. In press.

  18. Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (1992)Current Protocols in Molecular Biology, John Wiley & Sons Inc, Greene, NY, USA.

    Google Scholar 

  19. Sambrook, J., E. F. Fritsch, and T. Maniatis (1989)Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. USA.

    Google Scholar 

  20. Adams, A., D. E. Gottschling, C. A. Karser, and T. Stearns (1997)Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.

    Google Scholar 

  21. Wendland, J., Y. Ayad-Durieux, P. Knechtle, C. Rebischung, and P. Philippsen (2000) PCR-based gene targeting in the filamentous fungusAshbya gossypii.Gene 242: 381–391.

    Article  CAS  Google Scholar 

  22. Sauer, U., V. Hatzimanikatis, H. P. Hohmann, M. Manneberg, A. P. van Loon, and J. E. Bailey (1996) Physiology and metabolic fluxes of wild-type and riboflavin-producingBacillus subtilis.Appl. Environ. Microbiol. 62: 3687–3696.

    CAS  Google Scholar 

  23. Schmidt, G., K. P. Stahmann, and H. Sahm (1996) Inhibition of purified isocitrate lyase identified itaconate and oxalate as potential antimetabolites for the riboflavin overproducerAshbya gossypii.Microbiology 142: 411–417.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enoch Y. Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanamasa, S., Tajima, S. & Park, E.Y. Isocitrate dehydrogenase and isocitrate lyase are essential enzymes for riboflavin production inAshbya gossypii . Biotechnol. Bioprocess Eng. 12, 92–99 (2007). https://doi.org/10.1007/BF03028632

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03028632

Keywords

Navigation