Isocitrate dehydrogenase and isocitrate lyase are essential enzymes for riboflavin production inAshbya gossypii



For this study, we hypothesized that mitochondrial NAD+-dependent isocitrate dehydrogenase 1 (ICDH1) and isocitrate lyase (ICL1) were important enzymes for riboflavin synthesis in the fungusAshbya gossypii. Here, the genes encoding ICDH1 and ICL1 were disrupted in order to analyze the enzymes' functions on riboflavin production by the fungus. The riboflavin production resulting from these disruptants was markedly decreased compared to the concentration produced by its parental strain when cultured in a rich nutrient medium used to optimize riboflavin production. Furthermore, when comparing the transcription levels of the genes encoding ICDH1 and ICL1, between wild-typeA. gossypii and an itaconate resistant mutant ofA. gossypii obtained by UV irradiation, the mRNA levels in the mutant were 1.8- and 2.0-fold higher than those in the wild-type strain, respectively. These results indicate that ICDH1 and ICL1 are key enzymes for riboflavin synthesis inA. gossypii.


Ashbya gossypii NAD+-dependent isocitrate dehydrogenase 1 isocitrate lyase riboflavin production gene disruption 


  1. 1.
    Stahmann, K. P., J. L. Revuelta, and H. Sculberger (2000) Three biotechnical processes usingAshbya gossypii, Candida famata, orBacillus subtilis compete with chemical riboflavin production.Appl. Microbiol. Biotechnol. 53: 509–516.CrossRefGoogle Scholar
  2. 2.
    Demain, A. L. (1972) Riboflavin oversynthesis.Annu. Rev. Microbiol. 26: 369–388.CrossRefGoogle Scholar
  3. 3.
    Dietrich, F. S., S. Voegeli, S. Brachat, A. Lerch, K. Gates, S. Steiner, C. Mohr, R. Pohlmann, P. Luedi, S. Choi, R. A. Wing, A. Flavier, T. D. Gaftney, and P. Philippsen (2004) TheAshbya gossypii geneme as a tool for mapping the ancientSaccharomyces cerevisiae genome.Science 304: 304–307.CrossRefGoogle Scholar
  4. 4.
    Hermida, L., S. Brachat, S. Voegeli, P. Philippsen, and M. Primig (2005) The Ashbya Genome Database (AGD)—a tool for the yeast community and genome biologists.Nucleic Acids Res. 33: D348-D352.CrossRefGoogle Scholar
  5. 5.
    Ming, H., A. V. Lara Pizarro, and E. Y. Park (2003) Application of waste activated bleaching earth containing rapeseed oil on riboflavin production in the culture ofAshbya gossypii.Biotechnol. Prog. 19: 410–417.CrossRefGoogle Scholar
  6. 6.
    Park, E. Y. and H. Ming (2004) Oxidation of rapeseed oil in waste activated bleaching earth and its effect on riboflavin production in culture ofAshbya gossypii.J. Biosci. Bioeng. 97: 59–64.Google Scholar
  7. 7.
    Monschau, N., H. Sahm, and K. P. Stahmann (1998) Threonine aldolase overexpression plus threonine supplementation enhanced riboflavin production inAshbya gossypii.Appl. Environ. Microbiol. 64: 4283–4290.Google Scholar
  8. 8.
    Forster, C., M. A. Santos, S. Ruffert, R. Kramer, and J. L. Revuelta (1999) Physiological consequence of disruption of theVMAI gene in the riboflavin overproducerAshbya gossypii.J. Biol. Chem. 274: 9442–9448.CrossRefGoogle Scholar
  9. 9.
    Schlupen, C., M. A. Santos, U. Weber, A. de Graaf, J. L. Revuelta, and K. P. Stahmann (2003) Disruption of theSHM2 gene, encoding one of two serine hydroxymethyl-transferase isoenzymes, reduces the flux from glycine to serine inAshbya gossypii.Biochem. J. 369: 263–273.CrossRefGoogle Scholar
  10. 10.
    Kato, T. and E. Y. Park (2006) Expression of alamine: glyoxylate aminotransferase gene fromSaccharomyces cerevisiae inAshbya gossypii.Appl. Microbiol. Biotechnol. 71: 46–52.CrossRefGoogle Scholar
  11. 11.
    Przybyla-Zawislak, B., D. M. Gadde, K. Ducharme, and M. T. McCammon (1999) Genetic and biochemical interactions involving tricarboxylic acid cycle (TCA) function using a collection of mutants defective in all TCA cycle genes.Genetics 152: 153–166.Google Scholar
  12. 12.
    Cupp, J. R. and L. McAlister-Henn (1991) NAD+-dependent isocitrate dehydrogenase.J. Biol. Chem. 266: 22199–22205.Google Scholar
  13. 13.
    Cupp, J. R. and L. McAlister-Henn (1992) Cloning and characterization of the gene encoding the IDH1 subunit of NAD+-dependent isocitrate dehydrogenase fromSaccharomyces cerevisiae.J. Biol. Chem. 267: 16417–16423.Google Scholar
  14. 14.
    Fernandez, E., F. Moreno, and R. Rodicio (1992) TheICLI gene fromSaccharomyces cerevisiae.Eur. J. Biochem. 204: 983–990.CrossRefGoogle Scholar
  15. 15.
    Luttik, M. A., P. Kotter, F. A. Salomons, I. J. van der Klei, J. P. van Dijken, and J. T. Pronk (2000) TheSaccharomyces cerevisiae ICL2 gene encodes a mitochondrial 2-methylisocitrate lyase involved in propionyl-coenzyme A metabolism.J. Bacteriol. 182: 7007–7013.CrossRefGoogle Scholar
  16. 16.
    Maeting, I., G. Schmidt, H. Sahm, J. L. Revuelta, Y. D. Stierhof, and K. P. Stahmann (1999) Isocitrate lyase ofAshbya gossypii—transcriptional regulation and peroxisomal localization.FEBS Lett. 444: 15–21.CrossRefGoogle Scholar
  17. 17.
    Park, E. Y., J. H. Zhang, S. Tajima, and L. Dwiarti (2006) Isolation ofAshbya gossypii mutant for an improved riboflavin production targeting for biorefinery technology.J. Appl. Microbiol. In press.Google Scholar
  18. 18.
    Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (1992)Current Protocols in Molecular Biology, John Wiley & Sons Inc, Greene, NY, USA.Google Scholar
  19. 19.
    Sambrook, J., E. F. Fritsch, and T. Maniatis (1989)Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. USA.Google Scholar
  20. 20.
    Adams, A., D. E. Gottschling, C. A. Karser, and T. Stearns (1997)Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.Google Scholar
  21. 21.
    Wendland, J., Y. Ayad-Durieux, P. Knechtle, C. Rebischung, and P. Philippsen (2000) PCR-based gene targeting in the filamentous fungusAshbya gossypii.Gene 242: 381–391.CrossRefGoogle Scholar
  22. 22.
    Sauer, U., V. Hatzimanikatis, H. P. Hohmann, M. Manneberg, A. P. van Loon, and J. E. Bailey (1996) Physiology and metabolic fluxes of wild-type and riboflavin-producingBacillus subtilis.Appl. Environ. Microbiol. 62: 3687–3696.Google Scholar
  23. 23.
    Schmidt, G., K. P. Stahmann, and H. Sahm (1996) Inhibition of purified isocitrate lyase identified itaconate and oxalate as potential antimetabolites for the riboflavin overproducerAshbya gossypii.Microbiology 142: 411–417.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2007

Authors and Affiliations

  • Shin Kanamasa
    • 1
    • 2
  • Satoshi Tajima
    • 3
  • Enoch Y. Park
    • 2
    • 3
  1. 1.JST Innovation Satellite ShizuokaJapan Science and Technology AgencyHamamatsuJapan
  2. 2.Laboratory of Biotechnology, Integrated Bioscience Section, Graduate School of Science and TechnologyShizuoka UniversityShizuokaJapan
  3. 3.Laboratory of Biotechnology, Department of Applied Biological Chemistry, Faculty of AgricultureShizuoka UniversityShizuokaJapan

Personalised recommendations