Advertisement

Advances in Computational Mathematics

, Volume 3, Issue 3, pp 171–196 | Cite as

Issues in the numerical solution of evolutionary delay differential equations

  • C. T. H. Baker
  • C. A. H. Paul
  • D. R. Willé
Article

Abstract

Delay differential equations are of sufficient importance in modelling real-life phenomena to merit the attention of numerical analysts. In this paper, we discuss key features of delay differential equations (DDEs) and consider the main issues to be addressed when constructing robust numerical codes for their solution. We provide an introduction to the existing literature and numerical codes, and in particular we indicate the approaches adopted by the authors. We also indicate some of the unresolved issues in the numerical solution of DDEs.

Keywords

Delay differential equations numerical solution 

AMS subject classification

65Q05 34K05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Arndt, Numerical solution of retarded initial value problems: local and global error and step-size control, Numer. Math. 43 (1984) 343–360.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    H. Arndt, P.J. van der Houwen and B.P. Sommeijer, Numerical interpolation of retarded differential equations,Delay Equations: Approximation, Theory and Applications, ISNM 72 (Birkhäuser, 1985) pp. 41–51.Google Scholar
  3. [3]
    M. Artola, Equations paraboliques à retardment, C.R. Acad. Sci. Paris 264 (1967) 668–671.MathSciNetMATHGoogle Scholar
  4. [4]
    S. Arunsawatwong and V. Zakian,I MN recursions for long sequences of linear delay differential equations, Control Systems Centre report 791, UMIST, Manchester (1993).Google Scholar
  5. [5]
    U.M. Ascher and L.R. Petzold, The numerical solution of delay-differential-algebraic equations of retarded and neutral type, SIAM J. Numer. Anal., to appear.Google Scholar
  6. [6]
    G. Bader, Ein Mehrschrittverfahren mit variabler Schrittweite und variabler Ordnung zur Integration von Systemen retardierter Differentialgleichungen mit zustandsabhängiger Verzögerung, Diplomarbeit Universität Heidelberg (1983).Google Scholar
  7. [7]
    C.T.H. Baker, Propositions on the robustness of multistep formulae, Technical Report No. 244, University of Manchester (1994), J. Numer. Func. Anal. Optim., to appear.Google Scholar
  8. [8]
    C.T.H. Baker, Dynamics of discretized equations for DDEs,Proc. HERMIS ’94 Conf., Athens University of Economics and Business (Sept. 1994).Google Scholar
  9. [9]
    C.T.H. Baker and C.A.H. Paul, Computing stability regions — Runge-Kutta methods for delay differential equations, IMA J. Numer. Anal. 14 (1994) 347–362.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    C.T.H. Baker and C.A.H. Paul, Parallel continuous Runge-Kutta methods and vanishing lag delay differential equations, Adv. Comp. Math. 1 (1993) 367–394.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    C.T.H. Baker and C.A.H. Paul, A global convergence theorem for a class of parallel continuous explicit Runge-Kutta methods and vanishing lag delay differential equations, Technical Report No. 229, University of Manchester (1993); SIAM J. Numer. Anal. (1996), to appear.Google Scholar
  12. [12]
    C.T.H. Baker, C.A.H. Paul and D.R. Willé, A bibliography on the numerical solution of delay differential equations, Technical Report, University of Manchester, in preparation.Google Scholar
  13. [13]
    C.T.H. Baker, J.C. Butcher and C.A.H. Paul, Experience of STRIDE applied to delay differential equations, Technical Report No. 208, University of Manchester (1992).Google Scholar
  14. [14]
    H.T. Banks and F. Kappel, Spline approximations for functional differential equations, J. Diff. Eqns. 34 (1979) 496–522.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    V.K. Barwell, Special stability problems for functional differential equations, BIT 15 (1975) 130–135.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    A. Bellen, One-step collocation for delay differential equations, J. Comp. Appl. Math. 10 (1984) 275–283.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    A. Bellen and M. Zennaro, Numerical solution of delay differential equations by uniform corrections to an implicit Runge-Kutta method, Numer. Math. 47 (1985) 301–316.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    R.E. Bellman and K.L. Cooke,Differential-Difference Equations, Mathematics in Science and Engineering 6 (Academic Press, 1963).Google Scholar
  19. [19]
    R.E. Bellman and J.M. Danskin, A survey of the mathematical theory of time-lag, retarded control, and hereditary processes, R-256, The Rand Corporation, Santa Monica (1954).Google Scholar
  20. [20]
    R.E. Bellman, J.D. Buell and R.E. Kalaba, Mathematical experimentation in time-lag modulation, Commun. ACM 9 (1966) 752–753.CrossRefGoogle Scholar
  21. [21]
    R.E. Bellman, J.D. Buell and R.E. Kalaba, Numerical integration of a differential-difference equation with a decreasing time-lag, Commun. ACM 8 (1965) 227–228.MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    H.G. Bock and J.P. Schlöder, Numerical solution of retarded differential equations with state-dependent time lags, Z. Angew. Math. Mech. 61 (1981) 269–271.Google Scholar
  23. [23]
    U. Buchacker and S. Filippi, Stepsize control for delay differential equations using a pair of Runge-Kutta formulae, J. Comp. Appl. Math. 26 (1989) 339–343.MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    K. Burrage,Parallel and Sequential Methods for Ordinary Differential Equations (OUP, 1995).Google Scholar
  25. [25]
    K. Burrage, J.C. Butcher and F.H. Chipman, An implementation of singly-implicit Runge-Kutta methods, BIT 20 (1980) 326–340.MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    J.C. Butcher, The adaptation of STRIDE to delay differential equations, Appl. Numer. Math. 9 (1992) 415–425.MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    J. Carr, The asymptotic behaviour of the solutions of some linear functional differential equations, D.Phil., University of Oxford (1974).Google Scholar
  28. [28]
    N.H. Chosky, Time-lag controls: a bibliography, IRE Trans. Auto. Cont. AC-5 (1966) 66–70.Google Scholar
  29. [29]
    C.W. Cryer, Numerical methods for functional differential equations,Delay and Functional Differential Equations, ed. K. Schmitt (Academic Press, 1972).Google Scholar
  30. [30]
    G. Dahlquist, Recent work of stiff differential equations, Technical Report No. TRITA-NA-7512, Royal Institute of Technology, Stockholm (1975).Google Scholar
  31. [31]
    R.D. Driver,Ordinary and Delay Differential Equations, Applied Mathematics Series 20 (Springer, 1977).Google Scholar
  32. [32]
    E.L. El’sgol’ts,Qualitative Methods in Mathematical Analysis, Transl. Math. Monog. 12 (Academic Press, 1964).Google Scholar
  33. [33]
    E.L. El’sgol’ts and S.B. Norkin,Introduction to the Theory and Applications of Differential Equations with Deviating Arguments, Mathematics in Science and Engineering 105 (Academic Press, 1973).Google Scholar
  34. [34]
    W.H. Enright, Continuous numerical methods for ODEs and the implication for delay differential equations,Proc. HERMIS ’94 Conf., Athens University of Economics and Business (Sept. 1994).Google Scholar
  35. [35]
    W.H. Enright, The relative efficiency of alternative defect control schemes for high-order continuous Runge-Kutta formulas, SIAM J. Numer. Anal. 30 (1993) 1419–1445.MathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    W.H. Enright, A new error-control for initial-value solvers, Appl. Math. Comp. 31 (1989) 288–301.MathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    W.H. Enright, Analysis of error control strategies for continuous Runge-Kutta methods, SIAM J. Numer. Anal. 26 (1989) 588–599.MathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    W.H. Enright and M. Hu, Interpolating Runge-Kutta methods for vanishing lag delay differential equations, Computer Science Technical Report No. 292/94, University of Toronto (1994).Google Scholar
  39. [39]
    W.H. Enright, K.R. Jackson, S.P. Norsett and P.G. Thomsen, Interpolants for Runge-Kutta formulas, ACM Trans. Math. Soft. 12 (1986) 193–218.MathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    M.A. Feldstein, Discretization methods for retarded ordinary differential equations, Doctoral thesis, Department of Mathematics, UCLA (1964).Google Scholar
  41. [41]
    M.A. Feldstein and K.W. Neves, High-order methods for state-dependent delay differential equations with nonsmooth solutions, SIAM J. Numer. Anal. 21 (1984) 844–863.MathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    M.A. Feldstein and J. Sopka, Numerical methods for nonlinear Volterra integro-differential equations, SIAM J. Numer. Anal. 11 (1974) 826–846.MathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    K. Gopalsamy,Stability and Oscillations in Delay Differential Equations of Population Dynamics (Kluwer, Dordrecht, 1992).CrossRefMATHGoogle Scholar
  44. [44]
    E. Hairer, G. Wanner and S.P. Norsett,Solving Ordinary Differential Equations 1, Springer Series in Computational Mathematics 8 (Springer, 1983).Google Scholar
  45. [45]
    A. Halanay,Differential Equations: Stability, Oscillations, Time Lags, Mathematics in Science and Engineering 23 (Academic Press, 1966).Google Scholar
  46. [46]
    H. Hayashi and W.H. Enright, A new algorithm for vanishing delay problems, Canadian Applied Mathematics Society annual meeting, University of York (1993).Google Scholar
  47. [47]
    D.J. Higham, Highly continuous Runge-Kutta interpolants, ACM Trans. Math. Soft. 17 (1991) 368–386.MathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    D.R. Hill, A new class of one-step methods for the solution of Volterra functional differential equations, BIT 14 (1974) 298–305.CrossRefMATHGoogle Scholar
  49. [49]
    K.J. in’t Hout, Runge-Kutta methods in the numerical solution of delay differential equations, Ph.D. thesis, Department of Mathematics and Computer Science, University of Leiden (1992).Google Scholar
  50. [50]
    K.J. in’t Hout, A new interpolation procedure for adapting Runge-Kutta methods to delay differential equations, BIT 32 (1992) 634–649.MathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    K.J. in’t Hout and M.N. Spijker, Stability analysis of numerical methods for delay differential equations, Numer. Math. 59 (1991) 807–814.MathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    P.J. van der Houwen and B.P. Sommeijer, Linear multistep methods with reduced truncation error for periodic initial value problems, IMA J. Num. Anal. 4 (1984) 479–489.CrossRefMATHGoogle Scholar
  53. [53]
    P.J. van der Houwen and B.P. Sommeijer, Stability in linear multistep methods for pure delay equations, J. Comp. Appl. Math. 10 (1984) 55–63.CrossRefMATHGoogle Scholar
  54. [54]
    P.J. van der Houwen, B.P. Sommeijer and C.T.H. Baker, On the stability of predictor-corrector methods for parabolic equations with delay, IMA J. Num. Anal. 6 (1986) 1–23.CrossRefMATHGoogle Scholar
  55. [55]
    A. Iserles, Stability and dynamics of numerical methods for nonlinear ordinary differential equations, IMA J. Num. Anal. 10 (1990) 1–30.MathSciNetCrossRefMATHGoogle Scholar
  56. [56]
    A. Iserles and M. Buhmann, Stability of the discretized pantograph differential-equation, Math. Comp. 60 (1993) 575–589.MathSciNetCrossRefMATHGoogle Scholar
  57. [57]
    Z. Jackiewicz, Waveform relaxation methods for functional differential systems of neutral type,Proc. HERMIS ’94 Conf., Athens University of Economics and Business (Sept. 1994).Google Scholar
  58. [58]
    Z. Jackiewicz and E. Lo, The numerical integration of neutral functional-differential equations by fully implicit one-step methods, Technical Report No. 129, Arizona State University (1991).Google Scholar
  59. [59]
    F. Kappel and K. Kunisch, Spline approximations for neutral functional-differential equations, SIAM J. Numer. Anal. 18 (1981) 1058–1080.MathSciNetCrossRefMATHGoogle Scholar
  60. [60]
    T. Kato, Asymptotic behaviour of solutions of the functional differential equationsy′(x) = ay(λx) + by(x), in:Delay and Functional Differential Equations and Their Applications, ed. K. Schmitt (Academic Press, 1972).Google Scholar
  61. [61]
    T. Kato and J.B. McLeod, The functional differential equationy′(x) = ay(λx) + by(x), Bull. Amer. Math. Soc. 77 (1971) 891–937.MathSciNetCrossRefMATHGoogle Scholar
  62. [62]
    V.B. Kolmanovskii and A. Myshkis,Applied Theory of Functional Differential Equations, Mathematics and its Applications 85 (Kluwer, 1992).Google Scholar
  63. [63]
    V.B. Kolmanovskii and V.R. Nosov,Stability of Functional Differential Equations, Mathematics in Science and Engineering 180 (Academic Press, 1986).Google Scholar
  64. [64]
    P. Linz, Linear multistep methods for Volterra integro-differential equations, J. ACM 16 (1969) 295–301.MathSciNetCrossRefMATHGoogle Scholar
  65. [65]
    Y. Kuang,Delay Differential Equations with Applications in Population Dynamics, Mathematics in Science and Engineering 191 (Academic Press, 1993).Google Scholar
  66. [66]
    M.Z. Liu and M.N. Spijker, The stability of θ-methods in the numerical solution of delay differential equations, IMA J. Num. Anal. 10 (1990) 31–48.MathSciNetCrossRefMATHGoogle Scholar
  67. [67]
    Matlab, The Mathworks Inc., Natick, MA 01760.Google Scholar
  68. [68]
    K.W. Neves, Automatic integration of functional differential equations: an approach, ACM Trans. Math. Soft. 1 (1975) 357–368.MathSciNetCrossRefMATHGoogle Scholar
  69. [69]
    K.W. Neves and S. Thompson, Software for the numerical-solution of systems of functionaldifferential equations with state-dependent delay, Appl. Numer. Math. 9 (1992) 385–401.MathSciNetCrossRefMATHGoogle Scholar
  70. [70]
    K.W. Neves and M.A. Feldstein, Characterisation of jump discontinuities for state-dependent delay differential equations, J. Math. Anal. Appl. 56 (1976) 689–707.MathSciNetCrossRefMATHGoogle Scholar
  71. [71]
    H.J. Oberle and H.J. Pesch, Numerical treatment of delay differential equations by Herrnite interpolation, Num. Math. 37 (1981) 235–255.MathSciNetCrossRefMATHGoogle Scholar
  72. [72]
    J. Oppelstrup, The RKFHB4 method for delay differential equations, Lecture Notes in Mathematics 631 (1978) pp. 133–146.MathSciNetCrossRefGoogle Scholar
  73. [73]
    B. Owren and M. Zennaro, Derivation of efficient, continuous, explicit Runge-Kutta methods, SIAM J. Sci. Stat. Comp. 13 (1992) 1488–1501.MathSciNetCrossRefMATHGoogle Scholar
  74. [74]
    C.A.H. Paul, Performance and properties of a class of parallel continuous explicit Runge-Kutta methods for ordinary and delay differential equations,Proc. HERMIS ’94 Conf., Athens University of Economics and Business (Sept. 1994).Google Scholar
  75. [75]
    C.A.H. Paul, Runge-Kutta methods for functional differential equations, Ph.D. thesis, Mathematics Department, University of Manchester (1992).Google Scholar
  76. [76]
    C.A.H. Paul, Developing a delay differential equation solver, Appl. Num. Math. 9 (1992) 403–414.CrossRefMATHGoogle Scholar
  77. [77]
    T.L. Saaty,Modern Nonlinear Mathematics (Dover, New York, 1967).Google Scholar
  78. [78]
    L.F. Shampine, Interpolation for Runge-Kutta methods, SIAM J. Numer. Anal. 22 (1985) 1014–1026.MathSciNetCrossRefMATHGoogle Scholar
  79. [79]
    L.F. Shampine and P. Bogacki, The effect of changing the stepsize in linear multistep codes, SIAM J. Sci. Stat. Comp. 10 (1989) 1010–1023.MathSciNetCrossRefMATHGoogle Scholar
  80. [80]
    H.L. Smith and Y. Kuang, Slowly oscillating periodic-solutions of autonomous state-dependent delay equations, Nonlinear Anal.-Theory, Meth. Appl. 19 (1992) 855–872.MathSciNetCrossRefMATHGoogle Scholar
  81. [81]
    H.J. Stetter, Numerische Lösung von Differentialgleichungen mit nacheilendem Argument, ZAMM 45 (1965) 79–80.Google Scholar
  82. [82]
    L. Tavernini, One-step methods for the numerical solution of Volterra functional differential equations, SIAM J. Numer. Anal. 8 (1971) 786–795.MathSciNetCrossRefMATHGoogle Scholar
  83. [83]
    L. Torelli, Stability of numerical methods for delay differential equations, J. Comp. Appl. Math. 25 (1989) 15–26.MathSciNetCrossRefMATHGoogle Scholar
  84. [84]
    L. Wiederholt, Stability of multistep methods for delay differential equations, Math. Comp. 30 (1976) 283–290.MathSciNetCrossRefMATHGoogle Scholar
  85. [85]
    L. Wiederholt, Numerical solution of delay differential equations, Ph.D. thesis, University of Wisconsin (1970).Google Scholar
  86. [86]
    D.R. Willé, Experiments in stepsize control for Adams linear multistep methods, Technical Report No. 94-11, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, University of Heidelberg (1994).Google Scholar
  87. [87]
    D.R. Willé, New stepsize estimators for linear multistep methods, Technical Report No. 93-47, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, University of Heidelberg (1993). [Note erratum.]Google Scholar
  88. [88]
    D.R. Willé and C.T.H. Baker, Some issues in the detection and location of derivative discontinuities in delay-differential equations, Technical Report No. 238, University of Manchester (1994).Google Scholar
  89. [89]
    D.R. Willé and C.T.H. Baker, Stepsize control and continuity consistency for state-dependent delay differential equations, J. Comp. Appl. Math. 53 (1994) 163–170.CrossRefMATHGoogle Scholar
  90. [90]
    D.R. Willé and C.T.H. Baker, The tracking of derivative discontinuities in systems of delay differential equations, Appl. Num. Math. 9 (1992) 209–222.CrossRefMATHGoogle Scholar
  91. [91]
    D.R. Willé and C.T.H. Baker, DELSOL — a numerical code for the solution of systems of delay differential equations, Appl. Numer. Math. 9 (1992) 223–234.CrossRefMATHGoogle Scholar
  92. [92]
    D.R. Willé and C.T.H. Baker, A short note on the propagation of derivative discontinuities in Volterra-delay integro-differential equations, Technical Report No. 187, University of Manchester (1990).Google Scholar
  93. [93]
    E.M. Wright, On a sequence defined by a non-linear recurrence formula, J. London Math. Soc. 20 (1945) 68–73.MathSciNetCrossRefMATHGoogle Scholar
  94. [94]
    M. Zennaro, Natural continuous extensions of Runge-Kutta methods, Math. Comp. 46 (1986) 119–133.MathSciNetCrossRefMATHGoogle Scholar
  95. [95]
    M. Zennaro,P-stability properties of Runge-Kutta methods for delay differential equations, Numer. Math. 49 (1986) 305–318.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1995

Authors and Affiliations

  • C. T. H. Baker
    • 1
  • C. A. H. Paul
    • 1
  • D. R. Willé
    • 2
  1. 1.Mathematics DepartmentThe Victoria University of ManchesterManchesterEngland
  2. 2.Interdisciplinary Centre for Scientific ComputingUniversität HeidelbergGermany

Personalised recommendations