Canadian Journal of Anaesthesia

, Volume 47, Issue 11, pp 1074–1081 | Cite as

Dose-response relationships for edrophonium and neostigmine antagonism of atracurium and cisatracurium- induced neuromuscular block

  • Mohamed Naguib
  • Waleed Riad
Reports Of Investigation


Purpose: To study the dose-response relationships for neostigmine and edrophonium during antagonism of neuromuscular block induced by atracurium and cisatracurium.

Methods: One hundred and twenty eight, ASA group 1 or 2 adults were given either 0.5 mg·kg−1 atracurium or 0.1 mg·kg−1 cisatracurium during fentanyl-thiopental-nitrous oxide-isoflurane anesthesia. The neuromuscular block was measured by an acceleration-responsive transducer. Responses were defined in terms of percent depression in the first twitch (TI) and train-of-four (TOF) response. When spontaneous recovery of first twitch height reached 10% of its initial control value, edrophonium (0.1, 0.2, 0.4, or 1 mg·kg−1) or neostigmine (0.005, 0.01, 0.02, or 0.05 mg·kg−1) was administered by random allocation. Neuromuscular function in another sixteen subjects was allowed to recover spontaneously.

Results: At five minutes, unlike edrophonium, neostigmine was equally effective against atracurium and cisatracurium with respect to TI recovery. The neostigmine TI-ED50 was 10.3±1.06 (SEM) µg·kg−1 after atracurium and 11.2±1.06) µg·kg−1 after cisatracurium. The edrophonium ED50 was 157±1.07 µg·kg−1 with atracurium and 47.4±1.07 µg·kg−1 with cisatracurium, giving a neostigmine:edrophonium potency ratios of 15.2±1.7 and 4.2±0.41 (P<0.001) for atracurium and cisatracurium, respectively. At 10 min neostigmine was 13±1.4 times as potent as edrophonium for achieving 50% TOF recovery after atracurium paralysis. After cisatracurium the potency ratio was 11.8±1.3 (NS).

Conclusions: Although there were differences at five minutes, neostigmine:edrophonium potency ratios at 10 min, were similar in both relaxants studied.


Rocuronium Neostigmine Neuromuscular Blockade Atracurium Neuromuscular Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Objectif: Étudier les relations doses-réponses de la néostigmine et de l’édrophonium pendant le renversement du bloc neuromusculaire induit par l’atracurium et le cisatracurium.

Méthode: Cent vingt-huit adultes, d’état physique ASA I ou II, ont reçu, soit 0,5 mg·kg−1 d’atracurium, soit 0,1 mg·kg−1 de cisatracurium pendant l’anesthésie au fentanyl-thiopental-protoxyde d’azote-isoflurane. Le bloc neuromusculaire a été mesuré par un transducteur sensible à l’accélération. Les réponses ont été définies en termes de pourcentage de dépression lors de la réponse à la première stimulation (T1) et au train-de-quatre (TDQ). Au moment où la récupération spontanée à la première stimulation a atteint 10 % de la valeur témoin initiale, de l’édrophonium (0,1; 0,2; 0,4 ou 1 mg·kg−1) ou de la néostigmine (0,005; 0,01; 0,02 ou 0,05 mg·kg−1) a été administrée selon une affectation aléatoire. Chez seize autres sujets, on a laissé la fonction neuromusculaire se rétablir spontanément.

Résultats: À cinq minutes, contrairement à l’édrophonium, la néostigmine a été également efficace contre l’atracurium et le cisatracurium quant à la récupération à T1. La T1-ED50 de la néostigmine était de 10,3±1,06 (erreur type) µg·kg−1 après l’atracurium et de 11,2±1,06 µg·kg−1 après le cisatracurium. La ED50 de l’édrophonium était de 157±1,07 µg·kg−1 avec l’atracurium et de 47,4±1,07 µg·kg−1 avec le cisatracurium, ce qui donnait des coefficients de puissance néostigmine:édrophonium de 15,2±1,7 et de 4,2±0,41 (P<0,001) pour l’atracurium et le cisatracurium, respectivement. À 10 min, la néostigmine était 13±1,4 fois aussi puissante que l’édrophonium pour atteindre 50 % de récupération du TDQ après la paralysie avec l’atracurium. Après l’utilisation de cisatracurium, le coefficient de puissance était de 11,8±1,3 (NS).

Conclusion: Même s’ils étaient différents à cinq minutes, les coefficients de puissance néostigmine:édrophonium ont été similaires à 10 min avec les deux relaxants étudiés.


  1. 1.
    Belmont MR, Lien CA, Quessy S, et al. The clinical neuromuscular pharmacology of 51W89 in patients receiving nitrous oxide/opioid/barbiturate anesthesia. Anesthesiology 1995; 82: 1139–45.PubMedCrossRefGoogle Scholar
  2. 2.
    Naguib M, Samarkandi AH, Ammar A, Elfaqih SR, Al-Zahrani S, Turkistani A. Comparative clinical pharmacology of rocuronium, cisatracurium, and their combination. Anesthesiology 1998; 89: 1116–24.PubMedCrossRefGoogle Scholar
  3. 3.
    Viby-Mogensen J, Hensen E, Werner M, Kirkegaard Nielsen H. Measurement of acceleration: a new method of monitoring neuromuscular function. Acta Anaesthesiol Scand 1988; 32: 45–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Jensen E, Viby-Mogensen J, Bang U. The Accelograph®: a new neuromuscular transmission monitor. Acta Anaesthesiol Scand 1988; 32: 49–52.PubMedCrossRefGoogle Scholar
  5. 5.
    Finney DJ. Probit Analysis, 3rd ed. Cambridge: Cambridge University Press, 1971.Google Scholar
  6. 6.
    Armitage P. Statistical Methods in Medical Research. London: Blackwell Scientific Publications, 1971: 269–301.Google Scholar
  7. 7.
    Stenlake JB, Waigh RD, Dewar GH, et al. Biodegradable neuromuscular blocking agents. Part 6 — Stereochemical studies on atracurium and related polyalkylene di-esters. Eur J Med Chem 1984; 19: 441–50.Google Scholar
  8. 8.
    Tsiu D, Graham GG, Torda TA. The pharmacokinetics of atracurium isomersin vitro and in humans. Anesthesiology 1987; 67: 722–8.CrossRefGoogle Scholar
  9. 9.
    Wastila WB, Maehr RB, Turner GL, Hill DA, Savarese JJ. Comparative pharmacology of cisatracurium (51W89), atracurium and five isomers in cats. Anesthesiology 1996; 85: 169–77.PubMedCrossRefGoogle Scholar
  10. 10.
    Ward S, Neill EAM, Weatherley BC, Corall IM. Pharmacokinetics of atracurium besylate in healthy patients (after a single i.v. bolus dose). Br J Anaesth 1983; 55: 113–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Fahey MR, Rupp SM, Fisher DM, et al. The pharmacokinetics and pharmacodynamics of atracurium in patients with and without renal failure. Anesthesiology 1984; 61: 699–702.PubMedCrossRefGoogle Scholar
  12. 12.
    Lien CA, Schmith VD, Belmont MR, Abalos, A, Kisor DF, Savarese JJ. Pharmacokinetics of cisatracurium in patients receiving nitrous oxide/opioid/barbiturate anesthesia. Anesthesiology 1996; 84: 300–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Basta SJ, Ali HH, Savarese JJ, et al. Clinical pharmacology of atracurium besylate (BW 33A): a new nondepolarizing muscle relaxant. Anesth Analg 1982; 61: 723–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Merrett RA, Thomson CW, Webb FW.In vitro degradation of atracurium in human plasma. Br J Anaesth 1983; 55: 61–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Fisher DM, Canfell PC, Fahey MR, et al. Elimination of atracurium in humans: contributions of Hofmann elimination and ester hydrolysisversus organ-based elimination. Anesthesiology 1986; 65: 6–12.PubMedCrossRefGoogle Scholar
  16. 16.
    Welch RM, Brown A, Ravitch J, Dahl R. The in vitro degradation of cisatracurium, theR, cis-R′-isomer of atracurium, in human and rat plasma. Clin Pharmacol Ther 1995; 58: 132–42.PubMedCrossRefGoogle Scholar
  17. 17.
    Smith CE, van Miert MM, Parker CJR, Hunter JM. A comparison of the infusion pharmacokinetics and pharmacodynamics of cisatracurium, the 1R-cis 1′R-cis isomer of atracurium, with atracurium besylate in healthy patients. Anaesthesia 1997; 52: 833–41.PubMedCrossRefGoogle Scholar
  18. 18.
    Smith CE, Donati F, Bevan DR. Dose-response relationships for edrophonium and neostigmine as antagonists of atracurium and vecuronium neuromuscular blockade. Anesthesiology 1989; 71: 37–43.PubMedCrossRefGoogle Scholar
  19. 19.
    Naguib M, Abdulatif M, Al-Ghamdi A. Dose-response relationships for edrophonium and neostigmine antagonism of rocuronium bromide (ORG 9426)-induced neuromuscular blockade. Anesthesiology 1993; 79: 739–45.PubMedCrossRefGoogle Scholar
  20. 20.
    Naguib M, Abdulatif M, Al-Ghamdi A, Hamo I, Nouheid R. Dose-response relationships for edrophonium and neostigmine antagonism of mivacurium-induced neuromuscular block. Br J Anaesth 1993; 71: 709–14.PubMedCrossRefGoogle Scholar
  21. 21.
    Naguib M, Abdulatif M. Dose-response relationships for edrophonium and neostigmine antagonism of pipecuronium-induced neuromuscular block. Anesth Analg 1994; 78: 306–11.PubMedGoogle Scholar
  22. 22.
    Donati F, Smith CE, Bevan DR. Dose-response relationships for edrophonium and neostigmine as antagonists of moderate and profound atracurium blockade. Anesth Analg 1989; 68: 13–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Donati F, McCarroll SM, Antzaka C, McCready D, Bevan DR. Dose-response curves for edrophonium, neostigmine, and pyridostigmine after pancuronium andd-tubocurarine. Anesthesiology 1987; 66: 471–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Pascuzzo GJ, Akaike A, Maleque MA, et al. The nature of the interactions of pyridostigmine with the nicotinic acetylcholine receptor-ionic channel complex. I. Agonist, desensitizing, and binding properties. Mol Pharmacol 1984; 25: 92–101.PubMedGoogle Scholar

Copyright information

© Canadian Anesthesiologists 2000

Authors and Affiliations

  1. 1.King Saud UniversitySaudi Arabia
  2. 2.Department of AnesthesiaUniversity of Iowa College of MedicineIowa CityUSA

Personalised recommendations