Interface reactions and reaction synthesis of a high temperature composite system

  • J. S. Park
  • J. Cho
  • B. Y. Hur
  • J. H. Perepezko


Reactive diffusion during isothermal annealing was examined in a Ti−Al−Si temary system. When a TiAl/TiSi2 reaction couple was annealed at 1373 K for 200 h, the product phase sequence was observed as TiAl/TiAl2/Ti2Al5/TiAl3/Ti5Si4/TiSi/TiSi2, in which the integrated diffusion coefficient of Ti2Al5 showed the lowest value. A Ti-rich Ti5Si3 phase appeared when an additional Ti flux was provided between the TiAl/TiSi2 reaction. The growth kinetics for both the TiAl/TiSi2 (direction reaction) and TiAl/Ti/TiSi2 reactions (Ti biased reaction) were identified, and a comparison of the morphology of the product phases was provided. The chemical potential variation and mass balance exhibited guidance in predicting the diffusion pathway during isothermal annealing. It appears that a biasing reaction (i.e., controlling component flux) is an effective tool for the phase selection and morphology changes during isothermal annealing.


reaction diffusion biased reaction chemical potential 


  1. 1.
    C. Kamezawa, M. Hirai, M. Kusaka, M. Iwami, and J. Labis, Appl. Surf. Sci. 237, 607 (2004).CrossRefADSGoogle Scholar
  2. 2.
    C. Vahlas, I. W. Hall, and I. Haurie, Mater. Sci. Eng. A 259, 269 (2000).Google Scholar
  3. 3.
    V. E. Chelnokov and A. L. Syrkin, Mater. Sci. Eng. B 46, 248 (1997).CrossRefGoogle Scholar
  4. 4.
    J. H. Perepezko, M. H. Da Silva Bassani, J. S. Park, Edelstein, and R. K. Everett, Mat. Sci. Eng. A 195, 1 (1995).CrossRefGoogle Scholar
  5. 5.
    W. O. Soboyejo, F. Ye, L.-C. Chen, N. Bahtish, D. S. Schwartz, and R. J. Lederich, Acta metall. Mater. 44, 2027 (1996).Google Scholar
  6. 6.
    J. S. Kirkaldy and D. J. Young, Diffusion in the Condensed State, the Institute of Metals, London (1987).Google Scholar
  7. 7.
    C. M. Ward-Close, R. Minor, and P. J. Doorbar, Intermetallics 4, 217 (1998).CrossRefGoogle Scholar
  8. 8.
    L. Zhang, G. Qiu, and J. Wu, Scripta metal. et mater. 32, 1683 (1995).CrossRefGoogle Scholar
  9. 9.
    H. Vehoff, S. Reub, W. Vogt, and P. Specht, Structural Intermetallics, (eds. R. Darolia, J. J. Lewandowski, C. T. Liu, P. L. Mantin, D. B. Mirachle and M. V. Nathal), p. 657 (1993).Google Scholar
  10. 10.
    F. A. Crossley and D. H. Tuner, Trans. of Metall. Soc. of AIME 212, 60 (1958).Google Scholar
  11. 11.
    O. Schob, H. Nowtny, and F. Benesovsky, Planseeberichte fuer Pulvermetallurgie 10, 65 (1962).Google Scholar
  12. 12.
    A. Raman and K. Schbert, Zeitschrift fuer Metallkunde 56, 44 (1965).Google Scholar
  13. 13.
    A. M. Zakharov, I. T. Gul'din, A. A. Arnold, and Yu. A. Matsenko, Russ. Metall. Translated from Izvestina Akademi Nuak SSSR, Metally, 4, 185 (1988).Google Scholar
  14. 14.
    N. V. Agreeva, Diagrrammy Sostoyaniya Metallicheskikh system (eds. N. V. Agreeva), Vol. 14, p. 121, Viniti, Moscow (1968).Google Scholar
  15. 15.
    Handbook of Temary Alloy Phase Diagram, (eds. P. Villars, A. Prince, and H. Okamodo), Vol. 4, ASM International, Ohio, p. 4311 (1995).Google Scholar
  16. 16.
    J. S. Wu, P. A. Beaven, R. Wagner, C. Hartig, and J. Seeger, High-Temperature Ordered Intermetallic Alloys III (eds. C. T. Liu, A. I. Taub, N. S. Stoloff, and C. C. Koch), Vol. 133, p. 761, Pittsburgh, MRS (1989).Google Scholar
  17. 17.
    J. S. Wu, P. A. Beaven, and R. Wagner, Scripta metall. mat. 24, 207 (1990).CrossRefGoogle Scholar
  18. 18.
    J. L. Murray and A. J. McAlater, Bulletin of Alloy Phase Diagrams 5, p. 74 (1984).CrossRefGoogle Scholar
  19. 19.
    J. L. Murray, Phase Diagram of Binary Titanium Alloys (ed. J. L. Murray), p. 289, Ohio, ASM, (1987).Google Scholar
  20. 20.
    U. R. Kattner, J. C. Lin, and Y. A. Chang, Metall. Trans. A 12, 2081 (1992).Google Scholar
  21. 21.
    M. K. Hoffmeyer and J. H. Perepezko, in Light Metals 1991, ed. E. L. Rooy, The Mineral, Metal & Materials Soc., 1990, p 1105.Google Scholar
  22. 22.
    F. J. J. van Loo and G. D. Rieck, Acta metall. 21, 61 (1973).CrossRefGoogle Scholar
  23. 23.
    F. J. J. van Loo and G. D. Rieck, ibid. 21, 73 (1973).CrossRefGoogle Scholar
  24. 24.
    Hirano and Y. Iijima, Diffusion in Solid: Recent development (eds. M. A. Dyananda and G. E. Murch), p. 141, Publ. of the Metall. Soc., Penn, U.S.A. (1984).Google Scholar
  25. 25.
    B. V. Cockeram and R. A. Rapp, Metall. Mater. Trans. A 26, 777 (1995).CrossRefGoogle Scholar
  26. 26.
    C. Wagner, Acta metall. 17, 99 (1969).CrossRefGoogle Scholar
  27. 27.
    J. H. Gulpen, A. A. Kodentsov, and F. J. J. van Loo, Z. Metallkd. 86, 8 (1995).Google Scholar
  28. 28.
    T. C. Munro and B. Gleeson, Metall. Trans. A 27, 3761 (1996).CrossRefGoogle Scholar
  29. 29.
    F. J. J. van Loo and G. F. Bastin, DIMET4-82: Diffusion in Metal and Alloys (eds. F. J. Kedves and D. L. Beke), p. 58, Trans. Tech. Pub., MA (1983).Google Scholar
  30. 30.
    T. C. Chou and T. G. Neih, J. Mater. Res 5, 1985 (1990).CrossRefADSGoogle Scholar
  31. 31.
    J. S. Park, J. Cho, S. Yi, and J. H. Perepezko, Met. Mater.-Int. 12, 231 (2006).CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • J. S. Park
    • 1
  • J. Cho
    • 1
  • B. Y. Hur
    • 2
  • J. H. Perepezko
    • 3
  1. 1.Materials and Parts Team, Gwangju Research CenterKorea Institute of Industrial TechnologyGwangjuKorea
  2. 2.School of Nano and Advanced Materials EngineeringGyeongsang National UniversityGyeongnamKorea
  3. 3.Department of Materials Science and EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations