Skip to main content
Log in

Interface reactions and reaction synthesis of a high temperature composite system

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Reactive diffusion during isothermal annealing was examined in a Ti−Al−Si temary system. When a TiAl/TiSi2 reaction couple was annealed at 1373 K for 200 h, the product phase sequence was observed as TiAl/TiAl2/Ti2Al5/TiAl3/Ti5Si4/TiSi/TiSi2, in which the integrated diffusion coefficient of Ti2Al5 showed the lowest value. A Ti-rich Ti5Si3 phase appeared when an additional Ti flux was provided between the TiAl/TiSi2 reaction. The growth kinetics for both the TiAl/TiSi2 (direction reaction) and TiAl/Ti/TiSi2 reactions (Ti biased reaction) were identified, and a comparison of the morphology of the product phases was provided. The chemical potential variation and mass balance exhibited guidance in predicting the diffusion pathway during isothermal annealing. It appears that a biasing reaction (i.e., controlling component flux) is an effective tool for the phase selection and morphology changes during isothermal annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Kamezawa, M. Hirai, M. Kusaka, M. Iwami, and J. Labis, Appl. Surf. Sci. 237, 607 (2004).

    Article  ADS  CAS  Google Scholar 

  2. C. Vahlas, I. W. Hall, and I. Haurie, Mater. Sci. Eng. A 259, 269 (2000).

    Google Scholar 

  3. V. E. Chelnokov and A. L. Syrkin, Mater. Sci. Eng. B 46, 248 (1997).

    Article  Google Scholar 

  4. J. H. Perepezko, M. H. Da Silva Bassani, J. S. Park, Edelstein, and R. K. Everett, Mat. Sci. Eng. A 195, 1 (1995).

    Article  Google Scholar 

  5. W. O. Soboyejo, F. Ye, L.-C. Chen, N. Bahtish, D. S. Schwartz, and R. J. Lederich, Acta metall. Mater. 44, 2027 (1996).

    CAS  Google Scholar 

  6. J. S. Kirkaldy and D. J. Young, Diffusion in the Condensed State, the Institute of Metals, London (1987).

    Google Scholar 

  7. C. M. Ward-Close, R. Minor, and P. J. Doorbar, Intermetallics 4, 217 (1998).

    Article  Google Scholar 

  8. L. Zhang, G. Qiu, and J. Wu, Scripta metal. et mater. 32, 1683 (1995).

    Article  Google Scholar 

  9. H. Vehoff, S. Reub, W. Vogt, and P. Specht, Structural Intermetallics, (eds. R. Darolia, J. J. Lewandowski, C. T. Liu, P. L. Mantin, D. B. Mirachle and M. V. Nathal), p. 657 (1993).

  10. F. A. Crossley and D. H. Tuner, Trans. of Metall. Soc. of AIME 212, 60 (1958).

    CAS  Google Scholar 

  11. O. Schob, H. Nowtny, and F. Benesovsky, Planseeberichte fuer Pulvermetallurgie 10, 65 (1962).

    CAS  Google Scholar 

  12. A. Raman and K. Schbert, Zeitschrift fuer Metallkunde 56, 44 (1965).

    CAS  Google Scholar 

  13. A. M. Zakharov, I. T. Gul'din, A. A. Arnold, and Yu. A. Matsenko, Russ. Metall. Translated from Izvestina Akademi Nuak SSSR, Metally, 4, 185 (1988).

    Google Scholar 

  14. N. V. Agreeva, Diagrrammy Sostoyaniya Metallicheskikh system (eds. N. V. Agreeva), Vol. 14, p. 121, Viniti, Moscow (1968).

    Google Scholar 

  15. Handbook of Temary Alloy Phase Diagram, (eds. P. Villars, A. Prince, and H. Okamodo), Vol. 4, ASM International, Ohio, p. 4311 (1995).

    Google Scholar 

  16. J. S. Wu, P. A. Beaven, R. Wagner, C. Hartig, and J. Seeger, High-Temperature Ordered Intermetallic Alloys III (eds. C. T. Liu, A. I. Taub, N. S. Stoloff, and C. C. Koch), Vol. 133, p. 761, Pittsburgh, MRS (1989).

    Google Scholar 

  17. J. S. Wu, P. A. Beaven, and R. Wagner, Scripta metall. mat. 24, 207 (1990).

    Article  CAS  Google Scholar 

  18. J. L. Murray and A. J. McAlater, Bulletin of Alloy Phase Diagrams 5, p. 74 (1984).

    Article  CAS  Google Scholar 

  19. J. L. Murray, Phase Diagram of Binary Titanium Alloys (ed. J. L. Murray), p. 289, Ohio, ASM, (1987).

    Google Scholar 

  20. U. R. Kattner, J. C. Lin, and Y. A. Chang, Metall. Trans. A 12, 2081 (1992).

    Google Scholar 

  21. M. K. Hoffmeyer and J. H. Perepezko, in Light Metals 1991, ed. E. L. Rooy, The Mineral, Metal & Materials Soc., 1990, p 1105.

  22. F. J. J. van Loo and G. D. Rieck, Acta metall. 21, 61 (1973).

    Article  Google Scholar 

  23. F. J. J. van Loo and G. D. Rieck, ibid. 21, 73 (1973).

    Article  Google Scholar 

  24. Hirano and Y. Iijima, Diffusion in Solid: Recent development (eds. M. A. Dyananda and G. E. Murch), p. 141, Publ. of the Metall. Soc., Penn, U.S.A. (1984).

    Google Scholar 

  25. B. V. Cockeram and R. A. Rapp, Metall. Mater. Trans. A 26, 777 (1995).

    Article  Google Scholar 

  26. C. Wagner, Acta metall. 17, 99 (1969).

    Article  CAS  Google Scholar 

  27. J. H. Gulpen, A. A. Kodentsov, and F. J. J. van Loo, Z. Metallkd. 86, 8 (1995).

    Google Scholar 

  28. T. C. Munro and B. Gleeson, Metall. Trans. A 27, 3761 (1996).

    Article  Google Scholar 

  29. F. J. J. van Loo and G. F. Bastin, DIMET4-82: Diffusion in Metal and Alloys (eds. F. J. Kedves and D. L. Beke), p. 58, Trans. Tech. Pub., MA (1983).

    Google Scholar 

  30. T. C. Chou and T. G. Neih, J. Mater. Res 5, 1985 (1990).

    Article  ADS  CAS  Google Scholar 

  31. J. S. Park, J. Cho, S. Yi, and J. H. Perepezko, Met. Mater.-Int. 12, 231 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.S., Cho, J., Hur, B.Y. et al. Interface reactions and reaction synthesis of a high temperature composite system. Met. Mater. Int. 13, 1–12 (2007). https://doi.org/10.1007/BF03027816

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03027816

Keywords

Navigation