Deformation behavior of TiAl intermetallic compounds and orientation control by reactive diffusion and high-temperature uniaxial compression deformation

  • Kyu -Seop Park
  • Dong -Sik Bae
  • Hyo -Jong Kim
  • Chang -Yong Kang
  • Sung-Keun Lee


To determine the optimum method of producing TiAl intermetallic compounds with an oriented lamellar microstructure the authors applied reactive diffusion and high-temperature deformation in a two-phase state on Ti-43 mol.%Al and Ti-46 mol.%Al. The reactive diffusion process produces an α single-phase state with orientations that reflect the texture of the starting titanium foils; the high-temperature deformation aims to rotate the lamellar interface by means of preferential activation of the crystal slip systems that are parallel to the interface. The reactive diffusion process can effectively control the texture in an α single-phase state, though many voids are formed at the initial stages of reactive diffusion. Furthermore, after the heating process for the construction of the lamellar microstructure, uniaxial compression at 1323 K is quite effective for ensuring that the lamellar interface is rotated parallel to the compression plane. Finally, the deformation causes about one half of all the lamellae to be arranged within 20 degrees of the compression plane.


TiAl intermetallic compound lamellar microstructure orientation control reactive diffusion textured titanium foil 


  1. 1.
    H. Inui, M. H. Oh, N. Nakamura, and M. Yamaguchi,Acta matel.,40, 3095–3104 (1992).CrossRefGoogle Scholar
  2. 2.
    S. Yokoshima and M. Yamaguchi,Acta matel.,44, 873–883 (1996).CrossRefGoogle Scholar
  3. 3.
    D. R. Jonson, H. Inui, and M. Yamaguchi,Acta Mater.,44, 2523–2535 (1996).CrossRefGoogle Scholar
  4. 4.
    H. A. Lipsitt, D. Shechtman, and R. E. Schafric,Metall. Trans. A,6, 1991 (1975).CrossRefGoogle Scholar
  5. 5.
    S. M. Sastry and H. A. Lipsitt,Proceedings of the 4 th International Conference of Titanium, p. 1231, AIME (1981).Google Scholar
  6. 6.
    K. S. Park, K. Matsumura, and H. Fukutomi,J. Jpn Inst. Met.,66, 425–430 (2002).Google Scholar
  7. 7.
    H. Fukutomi, K. S. Park, T. Iseki, and T. Takahashi,Materials Science Forum,426, 1703–1708 (2003).CrossRefGoogle Scholar
  8. 8.
    A. Nomoto and H. Fukutomi,J. Jpn. Inst. Met.,61, 378–384 (1977).Google Scholar
  9. 9.
    H. Fukutomi, A. Nomoto, and T. Ota,Trans. JIM,36, 610 (1995).Google Scholar
  10. 10.
    Y. W. Kim,Acta metal. mater.,40, 1121 (1992).CrossRefGoogle Scholar
  11. 11.
    H. Fukutomi, M. Ueno, M. Nakamura, T. Suzuki, and S. Kikuchi,Mat. Trans. JIM 40, 654–658 (1999).Google Scholar
  12. 12.
    T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagrams Second Edition CD-ROM, ASM (1990).Google Scholar
  13. 13.
    M. J. Blackbum,Science, Technology and Application of Titanium (eds., R. T. Jaffee and N. E. Promisel), p. 633, Pergamon Press, London (1979).Google Scholar
  14. 14.
    M. Dahams and H. J. Bunge,J. Appl. Cryst.,22, 439–444 (1989).CrossRefGoogle Scholar
  15. 15.
    K. S. Park, D. S. Bae, G. H. Lee, and S. K. Lee,Met. Mater.-Int. 11, 481–486 (2005).CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Kyu -Seop Park
    • 1
  • Dong -Sik Bae
    • 1
  • Hyo -Jong Kim
    • 2
  • Chang -Yong Kang
    • 2
  • Sung-Keun Lee
    • 3
  1. 1.Department of Ceramic Science and EngineeringChangwon National UniversityGyeongnamKorea
  2. 2.Division of Materials Science and EngineeringPukyong National UniversityBusanKorea
  3. 3.Department of Materials Science and EngineeringDong-A UniversityBusanKorea

Personalised recommendations