Skip to main content
Log in

Deformation behavior of TiAl intermetallic compounds and orientation control by reactive diffusion and high-temperature uniaxial compression deformation

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

To determine the optimum method of producing TiAl intermetallic compounds with an oriented lamellar microstructure the authors applied reactive diffusion and high-temperature deformation in a two-phase state on Ti-43 mol.%Al and Ti-46 mol.%Al. The reactive diffusion process produces an α single-phase state with orientations that reflect the texture of the starting titanium foils; the high-temperature deformation aims to rotate the lamellar interface by means of preferential activation of the crystal slip systems that are parallel to the interface. The reactive diffusion process can effectively control the texture in an α single-phase state, though many voids are formed at the initial stages of reactive diffusion. Furthermore, after the heating process for the construction of the lamellar microstructure, uniaxial compression at 1323 K is quite effective for ensuring that the lamellar interface is rotated parallel to the compression plane. Finally, the deformation causes about one half of all the lamellae to be arranged within 20 degrees of the compression plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Inui, M. H. Oh, N. Nakamura, and M. Yamaguchi,Acta matel.,40, 3095–3104 (1992).

    Article  CAS  Google Scholar 

  2. S. Yokoshima and M. Yamaguchi,Acta matel.,44, 873–883 (1996).

    Article  CAS  Google Scholar 

  3. D. R. Jonson, H. Inui, and M. Yamaguchi,Acta Mater.,44, 2523–2535 (1996).

    Article  Google Scholar 

  4. H. A. Lipsitt, D. Shechtman, and R. E. Schafric,Metall. Trans. A,6, 1991 (1975).

    Article  Google Scholar 

  5. S. M. Sastry and H. A. Lipsitt,Proceedings of the 4 th International Conference of Titanium, p. 1231, AIME (1981).

  6. K. S. Park, K. Matsumura, and H. Fukutomi,J. Jpn Inst. Met.,66, 425–430 (2002).

    CAS  Google Scholar 

  7. H. Fukutomi, K. S. Park, T. Iseki, and T. Takahashi,Materials Science Forum,426, 1703–1708 (2003).

    Article  Google Scholar 

  8. A. Nomoto and H. Fukutomi,J. Jpn. Inst. Met.,61, 378–384 (1977).

    Google Scholar 

  9. H. Fukutomi, A. Nomoto, and T. Ota,Trans. JIM,36, 610 (1995).

    CAS  Google Scholar 

  10. Y. W. Kim,Acta metal. mater.,40, 1121 (1992).

    Article  CAS  Google Scholar 

  11. H. Fukutomi, M. Ueno, M. Nakamura, T. Suzuki, and S. Kikuchi,Mat. Trans. JIM 40, 654–658 (1999).

    CAS  Google Scholar 

  12. T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagrams Second Edition CD-ROM, ASM (1990).

  13. M. J. Blackbum,Science, Technology and Application of Titanium (eds., R. T. Jaffee and N. E. Promisel), p. 633, Pergamon Press, London (1979).

    Google Scholar 

  14. M. Dahams and H. J. Bunge,J. Appl. Cryst.,22, 439–444 (1989).

    Article  Google Scholar 

  15. K. S. Park, D. S. Bae, G. H. Lee, and S. K. Lee,Met. Mater.-Int. 11, 481–486 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Keun Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, K.S., Bae, D.S., Kim, H.J. et al. Deformation behavior of TiAl intermetallic compounds and orientation control by reactive diffusion and high-temperature uniaxial compression deformation. Met. Mater. Int. 12, 447–451 (2006). https://doi.org/10.1007/BF03027713

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03027713

Keywords

Navigation