Metals and Materials International

, Volume 13, Issue 2, pp 117–122 | Cite as

The effect of fluoride treatment on titanium treated with anodic spark oxidation

  • Il Song Park
  • Jong Jun Kim
  • Seung Geun Ahn
  • Min Ho Lee
  • Kyeong Won Seol
  • Tae Sung Bae


This study examined the effect of fluoride on the surface characteristics of an anodized titanium implant. Commercial pure titanium plate 20mm×10mm×2mm in size, and discs 1.5 mm thick and 1.5 mm in diameter, were used. The prepared samples were polished with #200 to #1, 000 SiC papers and were then washed sequentially with distilled water, alcohol and acetone. Anodic oxidation was performed using a regulated DC power supply in an electrolyte containing a mixture of 0.015 M DL-α-glycerophosphate disodium salt hydrate (DL-α-GP) and 0.2 M calcium acetate hydrate (CA) with an electric current density of 30mA/cm2 and voltage ranging from 0 to 290 V. The specimens were divided into four groups and a fluoride treatment was carried out. Group 1 was thermally treated in a 0.05 M TiF3 solution at 90°C, Group 2 was electrochemically treated at 150 V in a 0.05 M TiF3 solution, Group 3 was electrochemically treated at 150 V in a 0.05 M NaF solution, and Group 4 was electrochemically treated at 150 V in a 0.05 M HF solution. A porous oxide layer containing pores 1–4 μm in size was observed on the surface treated with anodic oxidation. The diameter of the pores was higher in the protrusion areas than in the sunken areas. A significant amount of fluoride ions was released in the initial period, with small amounts being released continuously thereafter. The viability of MC3T3 cells was high when the fluoride ion concentration was 10 ppm, but decreased with further increases in the fluoride concentration. A six-week immersion test in simulated body fluid (SBF) showed dense HA crystals in the group immersed in 0.05 M TiF3 at 90°C, which indicated good biocompatibility.


titanium biomaterials surface modification fluoride treatment anodic spark oxidation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Kasemo,J. Prosthet. Dent. 49, 832 (1983).PubMedCrossRefGoogle Scholar
  2. 2.
    B. Kasemo and J. Lausmaa,Quintessence, p. 99, Chicago (1985).Google Scholar
  3. 3.
    K. Hayashi, T. Inadome, T. Mashima, and Y. Sugioka,J. Biomed. Mater. Res. 27, 557 (1993).PubMedCrossRefGoogle Scholar
  4. 4.
    T. Hanawa, K. Asami, and K. Asaoka,Corros. Sci. 38, 1579 (1996).CrossRefGoogle Scholar
  5. 5.
    D. Buser, R. K. Schenk, S. Steinemann, J. P. Fiorellini, C. H. Fox, and H. Stich,J. Biomed Mater. Res. 25, 889 (1991).PubMedCrossRefGoogle Scholar
  6. 6.
    C. Larsson, P. Thomsen, B. O. Aronssen,et al., Biomaterials 17, 605 (1996).PubMedCrossRefGoogle Scholar
  7. 7.
    B. Groessner-Schreiber and R. S. Tuan,J. Cell. Sci. 101, 209 (1992).PubMedGoogle Scholar
  8. 8.
    T. Albrektsson, P-I. Branemark, H. A. Hansson, and J. Lindstrom,Acta Orthop. Scand. 52, 155 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    B. Chehroudi, T. R. L. Gould, and D. M. Brunette,J. Biomed. Mater. Res. 23, 1067 (1989).PubMedCrossRefGoogle Scholar
  10. 10.
    J. E. Lemons,Clin. Orthop. 235, 220 (1988).PubMedGoogle Scholar
  11. 11.
    B. C. Wang, T. M. Lee, E. Chang, and C. Y. Yang,J. Biomed. Mater. Res. 27, 1315 (1993).PubMedCrossRefGoogle Scholar
  12. 12.
    P. Ducheyne, W. Van Raemdonck, J. C. Heughebaert, and M. Heughebaert,Biomaterials 7, 97 (1986).PubMedCrossRefGoogle Scholar
  13. 13.
    S. Ban, S. Maruno, A. Harada, M. Hattori, K. Narita, and J. Hasegawa,Dent. Mater. J. 15, 31 (1996).PubMedGoogle Scholar
  14. 14.
    W. Q. Yan, T. Nakamura, M. Kobayashi, H. M. Kim, and F. Mijaji,J. Biomed. Mater. Res. 37, 267 (1996).CrossRefGoogle Scholar
  15. 15.
    M. H. Lee, D. J. Yoon, D. H. Won, T. S. Bae, and F. Watari.Met. Mater.-Int. 9, 35 (2003).CrossRefGoogle Scholar
  16. 16.
    T. Hanawa, H. Ukai, and K. Murakami,J. Electron. Spectrosc. 63, 347 (1993).CrossRefGoogle Scholar
  17. 17.
    T. Hanawa, H. Ukai, K. Murakami, and K. Asaoka,Mater. Trans. JIM 36, 438 (1995).Google Scholar
  18. 18.
    H. Ishizawa, M. Fujino, and M. Ogino,J. Biomed Mater. Res. 29, 1459 (1995).PubMedCrossRefGoogle Scholar
  19. 19.
    H. Ishizawa, and M. Ogino,J. Biomed. Mater. Res. 29, 65 (1995).PubMedCrossRefGoogle Scholar
  20. 20.
    H. Ishizawa, and Ogino M.,J. Biomed Mater. Res. 29, 1071 (1995b).PubMedCrossRefGoogle Scholar
  21. 21.
    M. Fini, A. Cigada, G. Rondelli, R. Chiesa, R. Giardino, G. Giavaresi, N. N. Aldini, P. Toricelli, and B. Vicentini,Biomaterials 20, 1587 (1999).PubMedCrossRefGoogle Scholar
  22. 22.
    J. E. Ellingsen,Bone Engineering. Toronto: EmSuared (ed. J. E. Davies), p. 183 (2000).Google Scholar
  23. 23.
    J. E. Ellingsen,Int. J. Oral. Maxillofac. Implants 19, 659 (2004).PubMedGoogle Scholar
  24. 24.
    L. Shapira,J. Dent. Res. 76, 1381 (1997).PubMedCrossRefGoogle Scholar
  25. 25.
    N. Morabito,Osteoporosis Int. 14, 500 (2003).CrossRefGoogle Scholar
  26. 26.
    JP. Schreckenbath, and G. Marx,J. Mater. Sci.: Mater. Med. 10, 453 (1999).CrossRefGoogle Scholar
  27. 27.
    PA. Anderson,et al., J. Orthopaed. Tes. 9, 890 (1991).CrossRefGoogle Scholar
  28. 28.
    A. Shteyer,et al., Calc. Tissue Res. 22, 297 (1977).CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Il Song Park
    • 1
    • 2
  • Jong Jun Kim
    • 1
  • Seung Geun Ahn
    • 3
  • Min Ho Lee
    • 1
  • Kyeong Won Seol
    • 2
  • Tae Sung Bae
    • 1
  1. 1.Dept. of Dental Biomaterials and Institute of Oral Bioscience, School of DentistryChonbuk National UniversityJeonbukKorea
  2. 2.Division of Advanced Materials Engineering and Research Center of Industrial Technology, Engineering CollegeChonbuk National UniversityKorea
  3. 3.Dept. of Prosthodontics and Institute of Oral Bioscience, School of DentistryChonbuk National UniversityKorea

Personalised recommendations