Metals and Materials International

, Volume 12, Issue 4, pp 317–322 | Cite as

Thermoelectric properties for P-type (Bi2Te3)0.2(Sb2Te3)0.8 alloys fabricated by shear extrusion

  • Sang Seok Kim
  • Tatsuhiko Aizawa


P-type (Bi2Te3)0.2(Sb2Te3)0.8 compounds were synthesized via bulk mechanical alloying (BMA), and subsequently prepared by a shear extrusion process in order to create the developed texture. The shear extrusion process improved the preferred orientation factor of the anisotropic crystallographic structure. It was found by an electron backscattered diffraction pattern (EBSP) analysis that approximately 90% of the crystallographic orientations for shear-extruded sample are aligned in the range deviated from 60° to 90° from the c-axis. The electric resistivity is well controlled at 1.008×10−5Ωm, which is nearly equal to that of the unidirectionally grown sample. The maximum figure of merit for the (Bi2Te3)0.2(Sb2Te3)0.8 alloy was found to be z=3.03×10−3K−1. The bending strength of the material produced is also improved to 120 MPa, six times larger than that of the unidirectionally grown sample.


p-type shear extrusion anisotropy electron backscattered diffraction patterns (EBSP) crystallographic orientation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. M. Tritt,Science 272, 1276–1277 (1996).CrossRefADSGoogle Scholar
  2. 2.
    J. R. Drabble and C. H. L. Goodman,J. Phys. Chem. Solids 5, 142 (1953).CrossRefGoogle Scholar
  3. 3.
    R. T. Delves, A. E. Dowley, D. W. Hazelden, and H. J. Goldsmid,Proc. Phys. Soc. 78, 838 (1961).CrossRefGoogle Scholar
  4. 4.
    I. J. Ohsugi, T. Kojima, M. Sakata, M. Yamanashi, and I. A. Nishida,J. Appl. Phys. 76, 2235 (1994).CrossRefADSGoogle Scholar
  5. 5.
    J. Nagao, M. Ferhat, E. Hatta, and K. Mukasa,Phys. Stat. Sol. (b) 219, 347–349 (2000).CrossRefGoogle Scholar
  6. 6.
    T. S. Oh, D. B. Hyun, and N. V. Kolomoets,Scripta mater. 42, 849–854 (2000).CrossRefGoogle Scholar
  7. 7.
    J. Seo, D. cho, K. Park and C. Lee,Mater Res Bull 35, 2157–2163 (2000).CrossRefGoogle Scholar
  8. 8.
    T. Tokiai, T. Vesugi, and K. Koumoto,J. Ceram. Soc. Jap. 103, 917–922 (1995).Google Scholar
  9. 9.
    F. K. Lotgering,J. Inorg. Nucl. Chem. 9, 113 (1959).CrossRefGoogle Scholar
  10. 10.
    D. B. Hyun, T. S. Oh, J. S. Hwang, and J. D. Shim,Scripta mater. 44, 455–460 (2001).CrossRefGoogle Scholar
  11. 11.
    I. S. Kim, H. C. Won, and B. S. Chun,J. Kor. Inst. of Met. & Mater. 35, 258–265 (1997).Google Scholar
  12. 12.
    D. B. Hyun, J. S. Hwang, and J. D. Shim,J. Mater. Sci. 36, 1285–1291 (2001).CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Research Center for Advanced Science and TechnologyUniversity of TokyoTokyoJapan
  2. 2.Jayram OfficeUniversity of TorontoTokyoJapan

Personalised recommendations