Advertisement

Mechanical properties of metals for biomedical applications using powder metallurgy process: A review

  • Montasser Marasy Dewidar
  • Ho-Chel Yoon
  • Jae Kyoo Lim
Article

Abstract

The uses of biomaterials have been revolutionizing the biomedical field in deployment as implants for humans. During the past five decades, many implant materials made of metals have been put into practical use. Powder metallurgy techniques have been used to produce controlled porous structures, such as porous coatings applied for dental and orthopedic surgical implants, which allow bony tissue ingrowth within the implant surface, thereby improving fixation. This paper examines various important metals using powder metallurgy technology to produce elements of a total hip replacement. These alloys are 316L stainless steel alloy, Co−Cr−Mo alloy, and Ti−6Al−4V alloy. Also, this paper examines current information on the mechanical properties. Mechanical properties are discussed as a function of type of materials and process of fabrication. This article addresses the engineering aspects concerning the advantages and disadvantages of each type of material.

Keywords

powder metallurgy mechanical properties 316L stainless steel Co−Cr−Mo Ti−6Al−4V 

References

  1. 1.
    S. K. Kalpana,Colloid Surface. B 39, 133 (2004).Google Scholar
  2. 2.
    W. Leszek, R. Jan Dabrowskib, and O. Zbigniew,Mater. Charact. 46, 221 (2001).CrossRefGoogle Scholar
  3. 3.
    D. I. Bardos,Biomater. Met. Dev. 1, 73 (1979).Google Scholar
  4. 4.
    B. S. Becker, J. D. Bolton, and M. Youseffi,Powder Metall. 38, 201 (1995).Google Scholar
  5. 5.
    B. S. Becker and J. D. Bolton,Powder Metall. 40, 305 (1997).Google Scholar
  6. 6.
    R. M. German,Metal Powder Industry, p. 219–223, Metal Powder Industries Federation (1984).Google Scholar
  7. 7.
    M. D. Hoang Le, M. D. Thongtrangan, and H. K. Daniel,Neurosurg. Focus 17, 1 (2004).Google Scholar
  8. 8.
    E. Smith,Arthroplasty for Arthritis, www.totalhipreplacement. net (2005).Google Scholar
  9. 9.
    D. Joseph Bronzino,The Biomedical Engineering Handbook, 2nd ed., p. 1, CRC Press, Boca Raton (1999).Google Scholar
  10. 10.
    G. K. McKee and J. W. Farrar,J. Bone Joint Surg. Br. 48, 245 (1966).PubMedGoogle Scholar
  11. 11.
    J. Charnley,Lancet 27, 1129 (1961).CrossRefGoogle Scholar
  12. 12.
    J. Charnley,Clin. Orthop. Relat. Res. 72, 18 (1970).Google Scholar
  13. 13.
    H. G. Willert and J. Semlitsch,J. Biomed. Mater. Res. 11, 157 (1977).PubMedCrossRefGoogle Scholar
  14. 14.
    H. P. Sieber, C. B. Rieker, and P. Kottig,J. Bone Joint Surg. Br. 81, 256 (1999).CrossRefGoogle Scholar
  15. 15.
    M. Wagner and H. Wagner,Clin. Orthop. 379, 123 (2000).PubMedCrossRefGoogle Scholar
  16. 16.
    L. D Dorr, Z. Wan, and D. B. Longjohn,J. Bone Joint Surg. Am. 82, 789 (2000).PubMedGoogle Scholar
  17. 17.
    A. V. Lombardi, T. H. Mallory, and M. M. Alexiades,J. Arthroplasty 16, S122 (2001).Google Scholar
  18. 18.
    C. Rieker and P. Kottig,Hip International 12, 73 (2002).Google Scholar
  19. 19.
    S. J. MacDonald, R. W. McCalden, and D. G. Chess,Clin. Orthop. 406, 282 (2003).PubMedCrossRefGoogle Scholar
  20. 20.
    P. S. Walker and B. L. Gold,Wear 17, 285 (1971).CrossRefGoogle Scholar
  21. 21.
    J. A. Schey,Clin. Orthop. Relat. Res. 329, S115 (1996).Google Scholar
  22. 22.
    M. A. Khan, R. L. Williams, and D. F. Williams,Biomaterials 17, 2117 (1996).PubMedCrossRefGoogle Scholar
  23. 23.
    M. A. Khan, R. L. Williams, and D. F. Williams,Biomaterials 20, 631 (1999).PubMedCrossRefGoogle Scholar
  24. 24.
    A. G. Protek,Metasul tm Technical brochure, 2nd ed, p. 154–158, Switzerland (1994).Google Scholar
  25. 25.
    D. Dowson,ASM Handbook, Vol. 18, p. 656, Materials Park, Gereland, OH (1992).Google Scholar
  26. 26.
    R. A. Ratcheson,Proc. of the Orthopaedic Research Society Annual Meeting, p. 23–31, American Academy of Orthopaedic Surgeons, Orlando, FL (1995).Google Scholar
  27. 27.
    R. M. Streicher, M. F. Semlitsch, H. Weber, and R. Schon,Transactions of the 20th Annual Meeting of the Society for Biomaterials, p. 323–331, Boston, MA (1994).Google Scholar
  28. 28.
    J. W. Simmons,Mater. Sci. Eng. A 207, 159 (1996).CrossRefGoogle Scholar
  29. 29.
    M. K. Lei and X. M. Zhu,Biomaterials 22, 641 (2001).CrossRefGoogle Scholar
  30. 30.
    A. Wang, A. Essner, V. K. Polineni, C. Stark, and J. H. Dumbleton,Tribol. Int. 31, 17 (1998).CrossRefGoogle Scholar
  31. 31.
    P. A. Revell, M. Braden, and M. A. R. Freeman,Biomaterials 19, 1579 (1998).PubMedCrossRefGoogle Scholar
  32. 32.
    T. Dixon, M. Shaw, S. Ebrahim, and P. Dieppe,Ann. Rheum. Dis. 63, 825 (2004).PubMedCrossRefGoogle Scholar
  33. 33.
    D. W. Hoeppner and V. Chandrasekam,Wear 173, 189 (1994).CrossRefGoogle Scholar
  34. 34.
    V. Chiaverini and G. Jeszensky,Advances In Powder Metallurgy, Vol. 5 (eds. J. M. Campus and R. M. German), p. 359–372, Metal Powder Industries Federation, Princeton, New Jersey (1992).Google Scholar
  35. 35.
    J. Baszkiewicz, J. A. Kozubowski, D. Krupa, and M. Kamin,J. Mater. Sci. 33, 4561 (1998).ADSCrossRefGoogle Scholar
  36. 36.
    D. F. Williams,Proc. of a Consensus Conference of the European Society for Biomaterials, p. 45–52, Elsevier, Chester, England (1986).Google Scholar
  37. 37.
    D. M. Brunette, P. Tengvall, M. Textor, and P. Thomsen,Titanium in Medicine, p. 2, Springer-Verlag, Berlin, Heidelberg, New York (2002).Google Scholar
  38. 38.
    B. P. Joon and S. L. Roderic,Biomaterials: An Introduction, Plenum Press, New York, (1992).Google Scholar
  39. 39.
    T. L. Norman, D. Vashishth, and D. B. Burr,J. Biomech. 28, 309 (1995).PubMedCrossRefGoogle Scholar
  40. 40.
    I. J. Kager and P. Fratzl,Biophys. J. 79, 1737 (2000).CrossRefGoogle Scholar
  41. 41.
    D. F. Williams (ed.),Proc. of a Consensus Conference of the European Society for Biomaterials, p. 236, Elsevier, Amsterdam (1987).Google Scholar
  42. 42.
    J. Black,Biological Performance of Materials: Fundamentals of Biocompatibility, 2nd ed, Marcel Dekker, New York, (1992).Google Scholar
  43. 43.
    C. Pina, C. K. Torres, and J. Guzma,J. Mater. Sci.: Mater. Med. 9, 93 (1998).CrossRefGoogle Scholar
  44. 44.
    X. Li, X. Wang, R. Bondokov, J. Morris, Y. H. An, and T. S. Sudarshan,J. Biomed. Mater. Res. B 72, 353 (2004).Google Scholar
  45. 45.
    A. R. Vinicius, E. C. Henriques, and R. M. Cosme da Silva,J. Mater. Process. Tech. 118, 212 (2001).CrossRefGoogle Scholar
  46. 46.
    K. H. Borowy and K. H. Kramer,Titanium: Science and Technology, Vol. 2, p. 1381, Deutsche Gesellschaft Fuor Metallkunde EV, Munich (1995).Google Scholar
  47. 47.
    E. B. Taddeia, V. A. R. Henriquesb, C. R. M. Silvab, and C. A. A. Cairob,Mater. Sci. Eng. C 24, 683 (2004).CrossRefGoogle Scholar
  48. 48.
    S. G. Steinemann and de Groot K (eds.),Evaluation of Biomaterials, Wiley, New York (1980).Google Scholar
  49. 49.
    S. G. Steinemann,Titanium: Science and Technology, vol. 2, p. 1373, Deutsche Gesellschaft Fuor Metallkunde EV, Munich (1985).Google Scholar
  50. 50.
    A. Wang and A. Essner,Wear 250, 212 (2001).CrossRefGoogle Scholar
  51. 51.
    M. Long and H. J. Rack,Biomaterials 19, 1621 (1998).PubMedCrossRefGoogle Scholar
  52. 52.
    W. L. Peter,ASM Handbook: Powder Metal Technologies and Applications Vol. 7, ASM International, New York (1998).Google Scholar
  53. 53.
    E. Otero, A. Pardo, M. V. Utrilla, E. Saenz, and J. F Alvarez,Corros. Sci. 40, 1421 (1998).CrossRefGoogle Scholar
  54. 54.
    P. R. Koseski, S. Pavan, N. B. Earhardt, R. M. German, and K. Young-Sam,J. Mater. Sci. Eng. A 390, 171 (2005).CrossRefGoogle Scholar
  55. 55.
    T. Pieczonka, J. Kazior, A. Tiziani, and A. Molinari,J. Mater. Process. Tech. 64, 327 (1997).CrossRefGoogle Scholar
  56. 56.
    R. M. German,Powder metallurgy of iron and steel, John Wiley & Sons, Inc., New York (1998).Google Scholar
  57. 57.
    E. Otero, A. Pardo, M. V. Utrilla, E. Sáenz, and F. J. Perez,Mater. Charact. 35, 145 (1995).CrossRefGoogle Scholar
  58. 58.
    C. Fan-Shiong and C. Chih-Neng,Surf. Coat. Tech. 173, 9 (2003).CrossRefGoogle Scholar
  59. 59.
    D. N. Wasnik, G. K. Dey, V. Kain, and I. Samajdar,Scripta mater. 49, 135 (2003).CrossRefGoogle Scholar
  60. 60.
    D. Durgalakshmi, B. K. Vasmi, P. Venugopal, and D. R. Achar,J. Mater. Process. Tech. 132, 293 (2003).CrossRefGoogle Scholar
  61. 61.
    A. Molinari,Metal Powder Report 52, 285 (1997).CrossRefGoogle Scholar
  62. 62.
    M. Rei, E. C. Milke, R. M. Gomes, L. Schaeffer, and J. P. Souza,Mater. Lett. 52, 360 (2002).CrossRefGoogle Scholar
  63. 63.
    C. Binet, D. F. Heaney, R. Spina, and L. Tricarico,J. Mater. Process. Tech. 164–165, 1160 (2005).CrossRefGoogle Scholar
  64. 64.
    Yimin Li, Shaojun Liu, Xuanhui Qu, and Baiyun Huang,J. Mater. Process. Tech. 137, 65 (2003).CrossRefGoogle Scholar
  65. 65.
    G. Dowson,Powder Metallurgy: the process and its Products, p. 183, IOP publishing Lid (1990).Google Scholar
  66. 66.
    Metal Hand Book,Powder Metallurgy, Vol. 7, 10th ed, ASM International, Material Park, Ohio (1984).Google Scholar
  67. 67.
    G. S Upadhyaya,Sintering of metals and ceramics, p. 344, John Wiley & Sons Ltd (2000).Google Scholar
  68. 68.
    J. A. Yule and J. J. Dunkley,Atomization of Metals for Powder Production and Spray Deposition, p. 177, Oxford University Press Inc., New York (1994).Google Scholar
  69. 69.
    W. Eric, M. D. Lee, and T. K. Hubert,J. Arthroplasty 16, 2 (2001).CrossRefGoogle Scholar
  70. 70.
    P. S. Thomas, C. P. Paul, T. M. Brian, R. B. Charles, and H. H. William,J. Arthroplasty 11, 322 (1996).CrossRefGoogle Scholar
  71. 71.
    J. Escobedo, J. Mhndez, D. Cortk, J. Gomez, M. Mindez, and H. Mancha,Mater. Design 17, 79 (1996).CrossRefGoogle Scholar
  72. 72.
    M. T. Itamura and K. S. Udell,ASME FED 173, 57 (1993).Google Scholar
  73. 73.
    T. Fujita, A. Agawa, C. Ouchi, and H. Tajima,Mater. Sci. Eng. A 213, 148 (1996).CrossRefGoogle Scholar
  74. 74.
    E. B. Taddei, V. A. Henriques, C. R. Silva, and C. A. Cairo,Mater. Sci. Eng C 24, 683 (2004).CrossRefGoogle Scholar
  75. 75.
    O. Ivasishin, K. Bondareva, and V. I. Bondarchuk,Strength Mater. 36, 225 (2004).CrossRefGoogle Scholar
  76. 76.
    H. O. Andren,Int. J. Refractory Metals Hard Mater. 18, 273 (2000).CrossRefGoogle Scholar
  77. 77.
    O. Ivasishin, V. Anokhin, A. Demididik, and D. Savvakin,key Eng. Mater. 188, 55 (2000).CrossRefGoogle Scholar
  78. 78.
    A. Bautista, C. Moral, G. Blanco, and F. Velasco,Mater. Corros. 56, 98 (2005).CrossRefGoogle Scholar
  79. 79.
    X. Demulsant and J. Mendez,Mater. Sci. Eng. A 219, 202 (1996).CrossRefGoogle Scholar
  80. 80.
    T. Hoshide, T. Hirota, and T. Inoue,Mater. Sci. Res. Int. 1, 169 (1995).Google Scholar
  81. 81.
    R. A. Wood and R. J. Favor,Titanium Alloys: Handbook Air Force Materials Laboratory, p. 33–41, Wright-Patterson Air Force Base, Ohio (1972).Google Scholar
  82. 82.
    Y. Ono, T. Yuri, H. Sumiyoshi, S. Matsuoka, and T. Ogata,Cryogenics 43, 483 (2003).ADSCrossRefGoogle Scholar
  83. 83.
    P. Kovacs and J. A. Davidson,Titanium 92 Science and Technology, p. 2705–2712, The Minerals, Metals& Materials Society, Warrendale (1993).Google Scholar
  84. 84.
    A. K. Mishra, J. A. Davidson, P. Kovacs, and R. A. Poggie,Beta Titanium in the 1990's, p. 61–72, The Minerals, Metals and Materials Society, Warrendale (1993).Google Scholar
  85. 85.
    T. Ahmed, M. Long, J. Silvestri, C. Ruiz, and H. J. Rack,Proc. of 8th World Titanium Conference, p. 183–189, Birmingham, UK (1995).Google Scholar
  86. 86.
    C. T. Liu, J. H. Schneibel, P. J. Maziasz, J. L. Wright, and D. S. Easton,Intermetallics 4, 429 (1996).CrossRefGoogle Scholar
  87. 87.
    A. M. Antonio, F. Jorge, and R. T. Strohaecker,Compos. Sci. Tech. 65, 1749 (2005).CrossRefGoogle Scholar
  88. 88.
    N. G. D. Murray and D. C. Dunand,Acta mater. 52, 2269 (2004).CrossRefGoogle Scholar
  89. 89.
    N. G. D. Murray and D. C. Dunand,Acta mater. 52, 2279 (2004).CrossRefGoogle Scholar
  90. 90.
    A. Wang, S. Yue, J. D. Bobyn, F. W. Chan, and J. B. Medley,Wear 225–229, 708 (1999).CrossRefGoogle Scholar
  91. 91.
    D. Dowson,Wear 190, 171 (1995).CrossRefGoogle Scholar
  92. 92.
    D. B. Burr, M. R Forwood, D. P. Fyhrie, B. Martin, M. B. Schafer, and C. H. Turner,J. Bone Miner. Res. 12, 6 (1997).PubMedCrossRefGoogle Scholar
  93. 93.
    L. V. Grifn, J. C. Gibeling, R. B. Martin, V. A. Gibson, and S. M. Stover,J. Biomech. 32, 105 (1999).CrossRefGoogle Scholar
  94. 94.
    C. A. Pattin, W. E. Caler, and D. R. Carter,J. Biomech. 29, 69 (1996).PubMedCrossRefGoogle Scholar
  95. 95.
    P. Zioupos, X. T. Wang, and J. D. Currey,J. Biomech. 29, 989 (1996).PubMedCrossRefGoogle Scholar
  96. 96.
    R. S. Greco,Implantation Biology: The Host Response and Biomedical Devices, p. 173–181, CRC Press, London (1994).Google Scholar
  97. 97.
    P. Duwer and H. Martens,Trans. AIME 185, 571 (1949).Google Scholar
  98. 98.
    C. Molins, J. A. Bas, and J. Planas,Adv. Powder Metall. 5, 345 (1992).Google Scholar
  99. 99.
    C. H. Ji, N. H Loh, K. A. Khor, and S. B. Tor,Mater. Sci. Eng. A 311, 74 (2001).CrossRefGoogle Scholar
  100. 100.
    B. S. Becker, J. D. Bolton, A. E. P. Morris, and M. E. R. Shanahan,Int. J. Mater. Prod. Tech. 15, 149 (2000).Google Scholar
  101. 101.
    D. Wise, D. J. Trantolo, D. E. Altobelli, M. J. Yaszemski, J. D. Gresser, E. R. Schwartz,Encyclopedic handbook of biomaterials and bioengineering, Marcel Dekker, Inc., New York (1995).Google Scholar
  102. 102.
    C. O. Bechtol, A. B. Ferguson, and P. G. Laing,Metals and Engineering in Bone and Joint Surgery, p. 55–63, Williams and Wilkins, Baltimore, MD (1959).Google Scholar
  103. 103.
    A. J. Saldívar and H. F. López,Scripta mater. 45, 427 (2001).CrossRefGoogle Scholar
  104. 104.
    C. Clarke, P. Campbell, and N. Kossovsky, St. John,ASTM STP 1144, p. 7–26, American Society for testing and materials, Philadelphia (1992).Google Scholar
  105. 105.
    K. Harris and S. Sikkenga,Proc. of the 24th BICTA Conference on Investment Casting, p. 1–10, Cannon Muskegon Corporation (1999).Google Scholar
  106. 106.
    H. S. Dobbs and J. L. M. Robertson,J. Mater. Sci. 18, 391, (1993).ADSCrossRefGoogle Scholar
  107. 107.
    Z. Paszenda and J. Marciniak,J. Mater. Process. Tech. 78, 143 (1998).CrossRefGoogle Scholar
  108. 108.
    A. H. John, T. C. Jill, J. S. Chris, H. M. Rhys, Ben Halfordc, and A. B. Richard,Biomaterials 26, 5890 (2005).CrossRefGoogle Scholar
  109. 109.
    Q. T. Pham, J. Escobedo, J. Mendez, D. Cortes, J. Gomez, M. Mendez, and H. Mancha, Mater. Design 17, 79 (1996).CrossRefGoogle Scholar
  110. 110.
    H. H. Chung and L. S. Shii,J. Mater. Process. Tech. 138, 231 (2003).CrossRefGoogle Scholar
  111. 111.
    L. Heinz, P. C. Marinello, L. Reclaru, and P. Scharer,J. Prosthet. Dent. 75, 515 (1996).CrossRefGoogle Scholar
  112. 112.
    P. R. Jones, D. W. Hukins, M. L. Porter, K. E. Davies, A. J. Timperley, and K. Hardinge,J. Biomed Eng. 14, 379 (1992).PubMedCrossRefGoogle Scholar
  113. 113.
    E. J. Cheal, M. Spector, and W. C. Hayes,J. Orthop. Res. 10, 405 (1992).PubMedCrossRefGoogle Scholar
  114. 114.
    R. Huiskes, H. Weinans, and B. Rietbergen,Clin. Orthop. Relat. Res. 274, 124 (1992).PubMedGoogle Scholar
  115. 115.
    M. Pawlikowski, K. Skalski, and M. Haraburda,Comput. Struct. 81, 887 (2003).CrossRefGoogle Scholar
  116. 116.
    S. Abkowits and D. Rowell,J. Met. 36, 273 (1986).Google Scholar
  117. 117.
    F. H. Froes, C. M. Cooke, and D. Eylon,Proc. 6 World Conf. on Titanium, p. 1161–1166, Paris (1989).Google Scholar
  118. 118.
    D. P. DeLo and H. R. Piehler,Acta Mater. 47, 2841 (1999).CrossRefGoogle Scholar
  119. 119.
    M. T. Jovanoviæ, S. Tadiæ, S. Zec, Z. Miškoviæ, and I. Bobiæ,Mater. Design,27, 192 (2004).CrossRefGoogle Scholar
  120. 120.
    H. Masuo and E. Satoshi,Mater. Sci. Eng. A 352, 85 (2003).CrossRefGoogle Scholar
  121. 121.
    T. Saito, H. Takamiya, and T. Furuta,Mater. Sci. Eng. A 243, 273 (1998).CrossRefGoogle Scholar
  122. 122.
    Materials properties handbook: titanium alloys (eds. R. Boyerm, E.W. Collings, and G. Welsch), p. 286, Materials Park, ASM International (1994).Google Scholar
  123. 123.
    D. Eylon and F. H. Froes,ASM metals handbooks, Vol. 2, p. 77, Materials Park, ASM International (1995).Google Scholar
  124. 124.
    S. Lampman,ASM metals handbooks, Vol. 2, p. 592–601, Materials Park, ASM International (1995).Google Scholar
  125. 125.
    B. S. Becker and J. D. Bolton,J. Mater. Sci.: Mater. Med. 8, 793 (1997).CrossRefGoogle Scholar
  126. 126.
    F. H. Froes, O. Ivasishin, V. S. Moxson, D. G. Savvakin, K. A. Bondereva, and A. M. Demidik,Proc. of the TMS Symposium on High Performance Metallic Materials for Cost Sensitive Applications (eds. F. H.(Sam) Froeset al.), p. 192, TMS, Warrendale, PA (2002).Google Scholar
  127. 127.
    H. A. Masuo, K. Yoshinari K. Yoshikuni, and M. Shin,ISIJ International 31, 922 (1991).CrossRefGoogle Scholar
  128. 128.
    N. Mitsuo and K. Oshiro,ISIJ International 31, 848 (1991).CrossRefGoogle Scholar
  129. 129.
    M. Peters, A. Gysler, and G. Lutjering,Science and Technology 22, 1777 (1981).Google Scholar
  130. 130.
    N. Stefansson and S. L. Semiatin,Metall. Mater. Trans. A 34, 691 (2003).CrossRefGoogle Scholar
  131. 131.
    T. Saito, T. Furuta, and T. Yamaguchi,Proc. 3rd Int. SAMPE Symposium, p. 1810, SAMPE, Tokyo (1993).Google Scholar
  132. 132.
    S. Emura, M. Hagiwara, and Y. Kawabe,Titanium '95 Science and Technology (eds. P. A. Blenkinsop, W. J. Evans, and H. M. Flower), p. 2714, The Institute of Materials, London (1996).Google Scholar
  133. 133.
    T. M. T. Godfrey, A. Wisbey, P. S. Goodwin, and K. Bagnall,Mater. Sci. Eng. A 282, 240 (2000).CrossRefGoogle Scholar
  134. 134.
    V. Amigo, M. D. Salvadora, F. Romeroa, C. Solvesa, and J. F. Morenob,J. Mater. Process. Tech. 141, 117 (2003).CrossRefGoogle Scholar
  135. 135.
    D. Suman, W. Martin, J. J. Beaman, and D. L. Bourell,Mater. Design 20, 115 (1999).CrossRefGoogle Scholar
  136. 136.
    Z. L. Donga, K. A. Khorb, C. H. Quekb, T. J. Whitea, and P. Cheang,Biomaterials 24, 97 (2003).CrossRefGoogle Scholar
  137. 137.
    Y. C. Tsui, C. Doyle, and T. W. Clyne,Biomaterials 19, 2031 (1998).PubMedCrossRefGoogle Scholar
  138. 138.
    K. Masayuk, M. Luciana, and A. Kenzo,J. Biomed. Mater. Res. B: Applied Biomaterials 68, 88 (2004).Google Scholar
  139. 139.
    X. Weichang, L. Xuanyong, Z. Xuebin, and D. Chuanxian,Surf. Coat. Tech. 185, 340 (2004).CrossRefGoogle Scholar
  140. 140.
    I. H. Oh, N. Naoyuki, M. Naoya, and H. Shuji,Scripta. mater. 49, 1197 (2003).CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Montasser Marasy Dewidar
    • 1
    • 2
  • Ho-Chel Yoon
    • 2
  • Jae Kyoo Lim
    • 3
  1. 1.Department of Mechanical Design and MaterialsHigh Institute of EnergyAswanEgypt
  2. 2.Department of Mechanical DesignChonbuk National UniversityJeonbukKorea
  3. 3.Automobile Hi-Technology Research Institute, Faculty of Mechanical & Aerospace System Eng.Chonbuk National UniversityChonbukJapan

Personalised recommendations