Skip to main content
Log in

Mechanical properties of metals for biomedical applications using powder metallurgy process: A review

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The uses of biomaterials have been revolutionizing the biomedical field in deployment as implants for humans. During the past five decades, many implant materials made of metals have been put into practical use. Powder metallurgy techniques have been used to produce controlled porous structures, such as porous coatings applied for dental and orthopedic surgical implants, which allow bony tissue ingrowth within the implant surface, thereby improving fixation. This paper examines various important metals using powder metallurgy technology to produce elements of a total hip replacement. These alloys are 316L stainless steel alloy, Co−Cr−Mo alloy, and Ti−6Al−4V alloy. Also, this paper examines current information on the mechanical properties. Mechanical properties are discussed as a function of type of materials and process of fabrication. This article addresses the engineering aspects concerning the advantages and disadvantages of each type of material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. K. Kalpana,Colloid Surface. B 39, 133 (2004).

    Google Scholar 

  2. W. Leszek, R. Jan Dabrowskib, and O. Zbigniew,Mater. Charact. 46, 221 (2001).

    Article  Google Scholar 

  3. D. I. Bardos,Biomater. Met. Dev. 1, 73 (1979).

    Google Scholar 

  4. B. S. Becker, J. D. Bolton, and M. Youseffi,Powder Metall. 38, 201 (1995).

    CAS  Google Scholar 

  5. B. S. Becker and J. D. Bolton,Powder Metall. 40, 305 (1997).

    Google Scholar 

  6. R. M. German,Metal Powder Industry, p. 219–223, Metal Powder Industries Federation (1984).

  7. M. D. Hoang Le, M. D. Thongtrangan, and H. K. Daniel,Neurosurg. Focus 17, 1 (2004).

    Google Scholar 

  8. E. Smith,Arthroplasty for Arthritis, www.totalhipreplacement. net (2005).

  9. D. Joseph Bronzino,The Biomedical Engineering Handbook, 2nd ed., p. 1, CRC Press, Boca Raton (1999).

    Google Scholar 

  10. G. K. McKee and J. W. Farrar,J. Bone Joint Surg. Br. 48, 245 (1966).

    PubMed  CAS  Google Scholar 

  11. J. Charnley,Lancet 27, 1129 (1961).

    Article  Google Scholar 

  12. J. Charnley,Clin. Orthop. Relat. Res. 72, 18 (1970).

    Google Scholar 

  13. H. G. Willert and J. Semlitsch,J. Biomed. Mater. Res. 11, 157 (1977).

    Article  PubMed  CAS  Google Scholar 

  14. H. P. Sieber, C. B. Rieker, and P. Kottig,J. Bone Joint Surg. Br. 81, 256 (1999).

    Article  Google Scholar 

  15. M. Wagner and H. Wagner,Clin. Orthop. 379, 123 (2000).

    Article  PubMed  Google Scholar 

  16. L. D Dorr, Z. Wan, and D. B. Longjohn,J. Bone Joint Surg. Am. 82, 789 (2000).

    PubMed  CAS  Google Scholar 

  17. A. V. Lombardi, T. H. Mallory, and M. M. Alexiades,J. Arthroplasty 16, S122 (2001).

    Google Scholar 

  18. C. Rieker and P. Kottig,Hip International 12, 73 (2002).

    Google Scholar 

  19. S. J. MacDonald, R. W. McCalden, and D. G. Chess,Clin. Orthop. 406, 282 (2003).

    Article  PubMed  Google Scholar 

  20. P. S. Walker and B. L. Gold,Wear 17, 285 (1971).

    Article  Google Scholar 

  21. J. A. Schey,Clin. Orthop. Relat. Res. 329, S115 (1996).

    Google Scholar 

  22. M. A. Khan, R. L. Williams, and D. F. Williams,Biomaterials 17, 2117 (1996).

    Article  PubMed  CAS  Google Scholar 

  23. M. A. Khan, R. L. Williams, and D. F. Williams,Biomaterials 20, 631 (1999).

    Article  PubMed  CAS  Google Scholar 

  24. A. G. Protek,Metasul tm Technical brochure, 2nd ed, p. 154–158, Switzerland (1994).

  25. D. Dowson,ASM Handbook, Vol. 18, p. 656, Materials Park, Gereland, OH (1992).

    Google Scholar 

  26. R. A. Ratcheson,Proc. of the Orthopaedic Research Society Annual Meeting, p. 23–31, American Academy of Orthopaedic Surgeons, Orlando, FL (1995).

    Google Scholar 

  27. R. M. Streicher, M. F. Semlitsch, H. Weber, and R. Schon,Transactions of the 20th Annual Meeting of the Society for Biomaterials, p. 323–331, Boston, MA (1994).

  28. J. W. Simmons,Mater. Sci. Eng. A 207, 159 (1996).

    Article  Google Scholar 

  29. M. K. Lei and X. M. Zhu,Biomaterials 22, 641 (2001).

    Article  CAS  Google Scholar 

  30. A. Wang, A. Essner, V. K. Polineni, C. Stark, and J. H. Dumbleton,Tribol. Int. 31, 17 (1998).

    Article  CAS  Google Scholar 

  31. P. A. Revell, M. Braden, and M. A. R. Freeman,Biomaterials 19, 1579 (1998).

    Article  PubMed  CAS  Google Scholar 

  32. T. Dixon, M. Shaw, S. Ebrahim, and P. Dieppe,Ann. Rheum. Dis. 63, 825 (2004).

    Article  PubMed  CAS  Google Scholar 

  33. D. W. Hoeppner and V. Chandrasekam,Wear 173, 189 (1994).

    Article  CAS  Google Scholar 

  34. V. Chiaverini and G. Jeszensky,Advances In Powder Metallurgy, Vol. 5 (eds. J. M. Campus and R. M. German), p. 359–372, Metal Powder Industries Federation, Princeton, New Jersey (1992).

    Google Scholar 

  35. J. Baszkiewicz, J. A. Kozubowski, D. Krupa, and M. Kamin,J. Mater. Sci. 33, 4561 (1998).

    Article  ADS  CAS  Google Scholar 

  36. D. F. Williams,Proc. of a Consensus Conference of the European Society for Biomaterials, p. 45–52, Elsevier, Chester, England (1986).

    Google Scholar 

  37. D. M. Brunette, P. Tengvall, M. Textor, and P. Thomsen,Titanium in Medicine, p. 2, Springer-Verlag, Berlin, Heidelberg, New York (2002).

    Google Scholar 

  38. B. P. Joon and S. L. Roderic,Biomaterials: An Introduction, Plenum Press, New York, (1992).

    Google Scholar 

  39. T. L. Norman, D. Vashishth, and D. B. Burr,J. Biomech. 28, 309 (1995).

    Article  PubMed  CAS  Google Scholar 

  40. I. J. Kager and P. Fratzl,Biophys. J. 79, 1737 (2000).

    Article  Google Scholar 

  41. D. F. Williams (ed.),Proc. of a Consensus Conference of the European Society for Biomaterials, p. 236, Elsevier, Amsterdam (1987).

    Google Scholar 

  42. J. Black,Biological Performance of Materials: Fundamentals of Biocompatibility, 2nd ed, Marcel Dekker, New York, (1992).

    Google Scholar 

  43. C. Pina, C. K. Torres, and J. Guzma,J. Mater. Sci.: Mater. Med. 9, 93 (1998).

    Article  CAS  Google Scholar 

  44. X. Li, X. Wang, R. Bondokov, J. Morris, Y. H. An, and T. S. Sudarshan,J. Biomed. Mater. Res. B 72, 353 (2004).

    Google Scholar 

  45. A. R. Vinicius, E. C. Henriques, and R. M. Cosme da Silva,J. Mater. Process. Tech. 118, 212 (2001).

    Article  Google Scholar 

  46. K. H. Borowy and K. H. Kramer,Titanium: Science and Technology, Vol. 2, p. 1381, Deutsche Gesellschaft Fuor Metallkunde EV, Munich (1995).

    Google Scholar 

  47. E. B. Taddeia, V. A. R. Henriquesb, C. R. M. Silvab, and C. A. A. Cairob,Mater. Sci. Eng. C 24, 683 (2004).

    Article  CAS  Google Scholar 

  48. S. G. Steinemann and de Groot K (eds.),Evaluation of Biomaterials, Wiley, New York (1980).

    Google Scholar 

  49. S. G. Steinemann,Titanium: Science and Technology, vol. 2, p. 1373, Deutsche Gesellschaft Fuor Metallkunde EV, Munich (1985).

    Google Scholar 

  50. A. Wang and A. Essner,Wear 250, 212 (2001).

    Article  Google Scholar 

  51. M. Long and H. J. Rack,Biomaterials 19, 1621 (1998).

    Article  PubMed  CAS  Google Scholar 

  52. W. L. Peter,ASM Handbook: Powder Metal Technologies and Applications Vol. 7, ASM International, New York (1998).

    Google Scholar 

  53. E. Otero, A. Pardo, M. V. Utrilla, E. Saenz, and J. F Alvarez,Corros. Sci. 40, 1421 (1998).

    Article  CAS  Google Scholar 

  54. P. R. Koseski, S. Pavan, N. B. Earhardt, R. M. German, and K. Young-Sam,J. Mater. Sci. Eng. A 390, 171 (2005).

    Article  CAS  Google Scholar 

  55. T. Pieczonka, J. Kazior, A. Tiziani, and A. Molinari,J. Mater. Process. Tech. 64, 327 (1997).

    Article  Google Scholar 

  56. R. M. German,Powder metallurgy of iron and steel, John Wiley & Sons, Inc., New York (1998).

    Google Scholar 

  57. E. Otero, A. Pardo, M. V. Utrilla, E. Sáenz, and F. J. Perez,Mater. Charact. 35, 145 (1995).

    Article  CAS  Google Scholar 

  58. C. Fan-Shiong and C. Chih-Neng,Surf. Coat. Tech. 173, 9 (2003).

    Article  CAS  Google Scholar 

  59. D. N. Wasnik, G. K. Dey, V. Kain, and I. Samajdar,Scripta mater. 49, 135 (2003).

    Article  CAS  Google Scholar 

  60. D. Durgalakshmi, B. K. Vasmi, P. Venugopal, and D. R. Achar,J. Mater. Process. Tech. 132, 293 (2003).

    Article  CAS  Google Scholar 

  61. A. Molinari,Metal Powder Report 52, 285 (1997).

    Article  Google Scholar 

  62. M. Rei, E. C. Milke, R. M. Gomes, L. Schaeffer, and J. P. Souza,Mater. Lett. 52, 360 (2002).

    Article  CAS  Google Scholar 

  63. C. Binet, D. F. Heaney, R. Spina, and L. Tricarico,J. Mater. Process. Tech. 164–165, 1160 (2005).

    Article  CAS  Google Scholar 

  64. Yimin Li, Shaojun Liu, Xuanhui Qu, and Baiyun Huang,J. Mater. Process. Tech. 137, 65 (2003).

    Article  CAS  Google Scholar 

  65. G. Dowson,Powder Metallurgy: the process and its Products, p. 183, IOP publishing Lid (1990).

  66. Metal Hand Book,Powder Metallurgy, Vol. 7, 10th ed, ASM International, Material Park, Ohio (1984).

    Google Scholar 

  67. G. S Upadhyaya,Sintering of metals and ceramics, p. 344, John Wiley & Sons Ltd (2000).

  68. J. A. Yule and J. J. Dunkley,Atomization of Metals for Powder Production and Spray Deposition, p. 177, Oxford University Press Inc., New York (1994).

    Google Scholar 

  69. W. Eric, M. D. Lee, and T. K. Hubert,J. Arthroplasty 16, 2 (2001).

    Article  Google Scholar 

  70. P. S. Thomas, C. P. Paul, T. M. Brian, R. B. Charles, and H. H. William,J. Arthroplasty 11, 322 (1996).

    Article  Google Scholar 

  71. J. Escobedo, J. Mhndez, D. Cortk, J. Gomez, M. Mindez, and H. Mancha,Mater. Design 17, 79 (1996).

    Article  CAS  Google Scholar 

  72. M. T. Itamura and K. S. Udell,ASME FED 173, 57 (1993).

    Google Scholar 

  73. T. Fujita, A. Agawa, C. Ouchi, and H. Tajima,Mater. Sci. Eng. A 213, 148 (1996).

    Article  Google Scholar 

  74. E. B. Taddei, V. A. Henriques, C. R. Silva, and C. A. Cairo,Mater. Sci. Eng C 24, 683 (2004).

    Article  CAS  Google Scholar 

  75. O. Ivasishin, K. Bondareva, and V. I. Bondarchuk,Strength Mater. 36, 225 (2004).

    Article  CAS  Google Scholar 

  76. H. O. Andren,Int. J. Refractory Metals Hard Mater. 18, 273 (2000).

    Article  Google Scholar 

  77. O. Ivasishin, V. Anokhin, A. Demididik, and D. Savvakin,key Eng. Mater. 188, 55 (2000).

    Article  CAS  Google Scholar 

  78. A. Bautista, C. Moral, G. Blanco, and F. Velasco,Mater. Corros. 56, 98 (2005).

    Article  CAS  Google Scholar 

  79. X. Demulsant and J. Mendez,Mater. Sci. Eng. A 219, 202 (1996).

    Article  Google Scholar 

  80. T. Hoshide, T. Hirota, and T. Inoue,Mater. Sci. Res. Int. 1, 169 (1995).

    CAS  Google Scholar 

  81. R. A. Wood and R. J. Favor,Titanium Alloys: Handbook Air Force Materials Laboratory, p. 33–41, Wright-Patterson Air Force Base, Ohio (1972).

    Google Scholar 

  82. Y. Ono, T. Yuri, H. Sumiyoshi, S. Matsuoka, and T. Ogata,Cryogenics 43, 483 (2003).

    Article  ADS  CAS  Google Scholar 

  83. P. Kovacs and J. A. Davidson,Titanium 92 Science and Technology, p. 2705–2712, The Minerals, Metals& Materials Society, Warrendale (1993).

    Google Scholar 

  84. A. K. Mishra, J. A. Davidson, P. Kovacs, and R. A. Poggie,Beta Titanium in the 1990's, p. 61–72, The Minerals, Metals and Materials Society, Warrendale (1993).

    Google Scholar 

  85. T. Ahmed, M. Long, J. Silvestri, C. Ruiz, and H. J. Rack,Proc. of 8th World Titanium Conference, p. 183–189, Birmingham, UK (1995).

  86. C. T. Liu, J. H. Schneibel, P. J. Maziasz, J. L. Wright, and D. S. Easton,Intermetallics 4, 429 (1996).

    Article  CAS  Google Scholar 

  87. A. M. Antonio, F. Jorge, and R. T. Strohaecker,Compos. Sci. Tech. 65, 1749 (2005).

    Article  CAS  Google Scholar 

  88. N. G. D. Murray and D. C. Dunand,Acta mater. 52, 2269 (2004).

    Article  CAS  Google Scholar 

  89. N. G. D. Murray and D. C. Dunand,Acta mater. 52, 2279 (2004).

    Article  CAS  Google Scholar 

  90. A. Wang, S. Yue, J. D. Bobyn, F. W. Chan, and J. B. Medley,Wear 225–229, 708 (1999).

    Article  Google Scholar 

  91. D. Dowson,Wear 190, 171 (1995).

    Article  CAS  Google Scholar 

  92. D. B. Burr, M. R Forwood, D. P. Fyhrie, B. Martin, M. B. Schafer, and C. H. Turner,J. Bone Miner. Res. 12, 6 (1997).

    Article  PubMed  CAS  Google Scholar 

  93. L. V. Grifn, J. C. Gibeling, R. B. Martin, V. A. Gibson, and S. M. Stover,J. Biomech. 32, 105 (1999).

    Article  Google Scholar 

  94. C. A. Pattin, W. E. Caler, and D. R. Carter,J. Biomech. 29, 69 (1996).

    Article  PubMed  CAS  Google Scholar 

  95. P. Zioupos, X. T. Wang, and J. D. Currey,J. Biomech. 29, 989 (1996).

    Article  PubMed  CAS  Google Scholar 

  96. R. S. Greco,Implantation Biology: The Host Response and Biomedical Devices, p. 173–181, CRC Press, London (1994).

    Google Scholar 

  97. P. Duwer and H. Martens,Trans. AIME 185, 571 (1949).

    Google Scholar 

  98. C. Molins, J. A. Bas, and J. Planas,Adv. Powder Metall. 5, 345 (1992).

    Google Scholar 

  99. C. H. Ji, N. H Loh, K. A. Khor, and S. B. Tor,Mater. Sci. Eng. A 311, 74 (2001).

    Article  Google Scholar 

  100. B. S. Becker, J. D. Bolton, A. E. P. Morris, and M. E. R. Shanahan,Int. J. Mater. Prod. Tech. 15, 149 (2000).

    CAS  Google Scholar 

  101. D. Wise, D. J. Trantolo, D. E. Altobelli, M. J. Yaszemski, J. D. Gresser, E. R. Schwartz,Encyclopedic handbook of biomaterials and bioengineering, Marcel Dekker, Inc., New York (1995).

    Google Scholar 

  102. C. O. Bechtol, A. B. Ferguson, and P. G. Laing,Metals and Engineering in Bone and Joint Surgery, p. 55–63, Williams and Wilkins, Baltimore, MD (1959).

    Google Scholar 

  103. A. J. Saldívar and H. F. López,Scripta mater. 45, 427 (2001).

    Article  Google Scholar 

  104. C. Clarke, P. Campbell, and N. Kossovsky, St. John,ASTM STP 1144, p. 7–26, American Society for testing and materials, Philadelphia (1992).

    Google Scholar 

  105. K. Harris and S. Sikkenga,Proc. of the 24th BICTA Conference on Investment Casting, p. 1–10, Cannon Muskegon Corporation (1999).

  106. H. S. Dobbs and J. L. M. Robertson,J. Mater. Sci. 18, 391, (1993).

    Article  ADS  Google Scholar 

  107. Z. Paszenda and J. Marciniak,J. Mater. Process. Tech. 78, 143 (1998).

    Article  Google Scholar 

  108. A. H. John, T. C. Jill, J. S. Chris, H. M. Rhys, Ben Halfordc, and A. B. Richard,Biomaterials 26, 5890 (2005).

    Article  CAS  Google Scholar 

  109. Q. T. Pham, J. Escobedo, J. Mendez, D. Cortes, J. Gomez, M. Mendez, and H. Mancha, Mater. Design 17, 79 (1996).

    Article  Google Scholar 

  110. H. H. Chung and L. S. Shii,J. Mater. Process. Tech. 138, 231 (2003).

    Article  CAS  Google Scholar 

  111. L. Heinz, P. C. Marinello, L. Reclaru, and P. Scharer,J. Prosthet. Dent. 75, 515 (1996).

    Article  Google Scholar 

  112. P. R. Jones, D. W. Hukins, M. L. Porter, K. E. Davies, A. J. Timperley, and K. Hardinge,J. Biomed Eng. 14, 379 (1992).

    Article  PubMed  CAS  Google Scholar 

  113. E. J. Cheal, M. Spector, and W. C. Hayes,J. Orthop. Res. 10, 405 (1992).

    Article  PubMed  CAS  Google Scholar 

  114. R. Huiskes, H. Weinans, and B. Rietbergen,Clin. Orthop. Relat. Res. 274, 124 (1992).

    PubMed  Google Scholar 

  115. M. Pawlikowski, K. Skalski, and M. Haraburda,Comput. Struct. 81, 887 (2003).

    Article  Google Scholar 

  116. S. Abkowits and D. Rowell,J. Met. 36, 273 (1986).

    Google Scholar 

  117. F. H. Froes, C. M. Cooke, and D. Eylon,Proc. 6 World Conf. on Titanium, p. 1161–1166, Paris (1989).

  118. D. P. DeLo and H. R. Piehler,Acta Mater. 47, 2841 (1999).

    Article  CAS  Google Scholar 

  119. M. T. Jovanoviæ, S. Tadiæ, S. Zec, Z. Miškoviæ, and I. Bobiæ,Mater. Design,27, 192 (2004).

    Article  CAS  Google Scholar 

  120. H. Masuo and E. Satoshi,Mater. Sci. Eng. A 352, 85 (2003).

    Article  CAS  Google Scholar 

  121. T. Saito, H. Takamiya, and T. Furuta,Mater. Sci. Eng. A 243, 273 (1998).

    Article  Google Scholar 

  122. Materials properties handbook: titanium alloys (eds. R. Boyerm, E.W. Collings, and G. Welsch), p. 286, Materials Park, ASM International (1994).

  123. D. Eylon and F. H. Froes,ASM metals handbooks, Vol. 2, p. 77, Materials Park, ASM International (1995).

  124. S. Lampman,ASM metals handbooks, Vol. 2, p. 592–601, Materials Park, ASM International (1995).

  125. B. S. Becker and J. D. Bolton,J. Mater. Sci.: Mater. Med. 8, 793 (1997).

    Article  CAS  Google Scholar 

  126. F. H. Froes, O. Ivasishin, V. S. Moxson, D. G. Savvakin, K. A. Bondereva, and A. M. Demidik,Proc. of the TMS Symposium on High Performance Metallic Materials for Cost Sensitive Applications (eds. F. H.(Sam) Froeset al.), p. 192, TMS, Warrendale, PA (2002).

    Google Scholar 

  127. H. A. Masuo, K. Yoshinari K. Yoshikuni, and M. Shin,ISIJ International 31, 922 (1991).

    Article  Google Scholar 

  128. N. Mitsuo and K. Oshiro,ISIJ International 31, 848 (1991).

    Article  Google Scholar 

  129. M. Peters, A. Gysler, and G. Lutjering,Science and Technology 22, 1777 (1981).

    Google Scholar 

  130. N. Stefansson and S. L. Semiatin,Metall. Mater. Trans. A 34, 691 (2003).

    Article  Google Scholar 

  131. T. Saito, T. Furuta, and T. Yamaguchi,Proc. 3rd Int. SAMPE Symposium, p. 1810, SAMPE, Tokyo (1993).

    Google Scholar 

  132. S. Emura, M. Hagiwara, and Y. Kawabe,Titanium '95 Science and Technology (eds. P. A. Blenkinsop, W. J. Evans, and H. M. Flower), p. 2714, The Institute of Materials, London (1996).

    Google Scholar 

  133. T. M. T. Godfrey, A. Wisbey, P. S. Goodwin, and K. Bagnall,Mater. Sci. Eng. A 282, 240 (2000).

    Article  Google Scholar 

  134. V. Amigo, M. D. Salvadora, F. Romeroa, C. Solvesa, and J. F. Morenob,J. Mater. Process. Tech. 141, 117 (2003).

    Article  CAS  Google Scholar 

  135. D. Suman, W. Martin, J. J. Beaman, and D. L. Bourell,Mater. Design 20, 115 (1999).

    Article  Google Scholar 

  136. Z. L. Donga, K. A. Khorb, C. H. Quekb, T. J. Whitea, and P. Cheang,Biomaterials 24, 97 (2003).

    Article  Google Scholar 

  137. Y. C. Tsui, C. Doyle, and T. W. Clyne,Biomaterials 19, 2031 (1998).

    Article  PubMed  CAS  Google Scholar 

  138. K. Masayuk, M. Luciana, and A. Kenzo,J. Biomed. Mater. Res. B: Applied Biomaterials 68, 88 (2004).

    Google Scholar 

  139. X. Weichang, L. Xuanyong, Z. Xuebin, and D. Chuanxian,Surf. Coat. Tech. 185, 340 (2004).

    Article  CAS  Google Scholar 

  140. I. H. Oh, N. Naoyuki, M. Naoya, and H. Shuji,Scripta. mater. 49, 1197 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Kyoo Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dewidar, M.M., Yoon, HC. & Lim, J.K. Mechanical properties of metals for biomedical applications using powder metallurgy process: A review. Met. Mater. Int. 12, 193–206 (2006). https://doi.org/10.1007/BF03027531

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03027531

Keywords

Navigation