Effect of high energy ball milling on displacement reaction and sintering of Al−Mg/SiO2 composite powders



High-energy ball milling and low temperature sintering were successfully employed to fabricate a metal matrix composite of Al reinforced with Al2O3 particulate. Nano- and/or submicro-sized SiO2 particles embedded in an Al−Mg matrix particle can be obtained by high-energy ball milling. No new phases were found in the high-energy ball milled Al-0.4 wt.% Mg-14 wt.%SiO2 powder. Milling of the Al−Mg−SiO2 powder increased the sintering rate and decreased the sintering temperature. The hardness ofthe sintered Al−Mg−SiO2 composite using the ball-milled powder was about twice that of a sintered composite using a mixed powder due to the fine and homogeneous distribution of Al2O3 particles formed by the displacement reaction between Al and SiO2 during sintering.


high-energy ball milling sintering composite displacement reaction 


  1. 1.
    J. Hashim, L. Looney, and M. S. J. Hashmi,J. Mater. Process. Tech. 92–93, 1 (1999).CrossRefGoogle Scholar
  2. 2.
    J. M. Torralba, C. E. da Costa, and F. Velasco,J. Mater. Proc. Tech. 133, 203 (2003).CrossRefGoogle Scholar
  3. 3.
    H. W. Xing, X. M. Cao, W. P. Hu, L. Z. Zhao, and J. S. Zhang,Mater. Lett. 59, 1563 (2005).CrossRefGoogle Scholar
  4. 4.
    M. R. Hanabe and P. B. Aswath,J. Mater. Res. 11, 1562 (1996).CrossRefADSGoogle Scholar
  5. 5.
    S. K. Chaudhury, A. K. Singh, C. S. Sivaramakrishnan, and S. C. Panigrahi,Mater. Sci. Eng. A 393, 196 (2005).CrossRefGoogle Scholar
  6. 6.
    X. C. Tong and H. S. Fang,Metall. Mater. Trans. A 29, 875 (1998).CrossRefGoogle Scholar
  7. 7.
    S. C. Tjong and Z. Y. Ma,Mater. Sci. Eng. R 9, 49 (2000).CrossRefGoogle Scholar
  8. 8.
    B. S. S. Daniel, V. S. R. Murthy, and G. S. Murty,J. Mater. Proc. Tech. 68, 132 (1997).CrossRefGoogle Scholar
  9. 9.
    K. D. Woo, H. S. Na, S. W. Kim, T. Sato, and A. Kamio,Met. Mater.-Int. 7, 613 (2001).CrossRefGoogle Scholar
  10. 10.
    I. H. Song, D. K. Kim, Y. D. Hahn, and H. D. Kim,Scr. Mater. 48, 413 (2003).CrossRefGoogle Scholar
  11. 11.
    K. D. Woo and D. L. Zhang,Curr. Appl. Phys. 4, 175 (2004).CrossRefADSGoogle Scholar
  12. 12.
    D. Y. Ying and D. L. Zhang,Mater. Sci. Eng. A 286, 152 (2000).CrossRefGoogle Scholar
  13. 13.
    Y. Peng, C. J. Deng, N. G. Ma, and Dickon H. L. Ng,Mater. Lett. 58, 679 (2004).CrossRefGoogle Scholar
  14. 14.
    B. D. Cullity and S. R. Stock,Element of X-Ray Diffraction, 3 rd ed., p. 388, Prentice Hall, Inc. Upper Saddle River, New Jersey (2001).Google Scholar
  15. 15.
    D. L. Zhang,Prog. Mater. Sci. 49, 537 (2004).CrossRefGoogle Scholar
  16. 16.
    Á. RÉVÉSZ,J. Mater. Sci. 40, 1643 (2005).CrossRefADSGoogle Scholar
  17. 17.
    M. C. Breslin, J. Ringnalda, X. Xu, M. Fuller, J. Seeger, G. S. Daehn, T. Otani, and H. L. Fraser,Mater. Sci. Eng. A 195, 113 (1995).CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Division of Advanced Materials Engineering and the Research Center of Advanced Materials DevelopmentChonbuk National UniversityJeonbukKorea
  2. 2.College of Life and Chemistry ScienceShenyang Normal UniversityShenyangP. R. China
  3. 3.Research Center of Advanced Materials DevelopmentChonbuk National UniversityKorea

Personalised recommendations