Metals and Materials International

, Volume 11, Issue 6, pp 513–520 | Cite as

Die-filling process during the thixoforming of a ZA27 alloy cylindrical rod

  • T. J. Chen
  • Y. Hao
  • Y. D. Li


The die-filling process during thixoforming of a ZA27 alloy cylindrical rod was deduced by analyzing microstructural characteristics in the semi-solid ingot prior to and after forming, and by analyzing the phenomena occurring during this thixoforming. These characteristics referred to some constituent segregation, such as a liquid-phase segregation and an inhomogeneous distribution of primary solid particles. The results indicated that the die-filling process could be properly deduced by using the method developed in this paper. The inhomogeneous distribution of primary solid particles in the formed rods mainly resulted from the inhomogeneous distribution in the semi-solid ingot. The detailed distribution was determined by the sequence of the die-filling. However, the aforementioned liquid segregation was mainly attributed to the die-filling process. The sequence of the die-filling process was from the bottom of the cylindrical cavity to the top and from the edge to the inner part of the cavity.


ZA27 alloy thixoforming semi-solid microstructure die-filling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. C. Flemings,Metall. trans. A 22, 957 (1991).Google Scholar
  2. 2.
    D. H. Kirkwood,Int. mater. rev. 39, 173 (1994).Google Scholar
  3. 3.
    G. Hirt, R. Dremer, and T. Witulski,Mater. design 18, 315 (1997).CrossRefGoogle Scholar
  4. 4.
    T. J. Chen, Y. Ma, Y. Hao, S. Lu and G. J. Xu,Trans. nonferrous met. soc. china 11, 98 (2001).Google Scholar
  5. 5.
    E. Tzimas and A. Zavaliangos,Mater. sci. eng. A 289, 217 (2000).CrossRefGoogle Scholar
  6. 6.
    E. Tzimas and A. Zavaliangos,Mater. sci. eng. A 289, 228 (2000).CrossRefGoogle Scholar
  7. 7.
    F. Czerwinski, A. Zielinska-Lipec, P. J. Pinet, and J. Overbeeke,Acta mater. 49, 1225 (2001).CrossRefGoogle Scholar
  8. 8.
    F. Czerwinski,Acta mater. 50, 3265 (2002).Google Scholar
  9. 9.
    F. Czerwinski,Script mater. 48, 327 (2003).CrossRefGoogle Scholar
  10. 10.
    S. C. Bergsma, M. C. Tolle, M. E. Kassner, X. Li, and E. Evangelista,Mater. sci. eng. A 237, 24 (2002).Google Scholar
  11. 11.
    W. R. Loue and M. Suery,Mater. sci. eng. A 203, 1 (1995).CrossRefGoogle Scholar
  12. 12.
    E. D. Manson-Whitton, I. C. Stone, J. R. Jones, P. S. Grant, and B. Cantor,Acta mater. 50, 2517 (2002).CrossRefGoogle Scholar
  13. 13.
    T. J. Chen, Y. Hao, J. Sun, and Y. D. Li,Mater. sci. eng. A 382, 90 (2004).CrossRefGoogle Scholar
  14. 14.
    T. J. Chen, Y. Hao, and J. Sun,Metall. mater. trans. A 35, 2073 (2004).CrossRefGoogle Scholar
  15. 15.
    C. P. Chen and C.-Y. A Tsao,Acta mater. 45, 1955 (1997).CrossRefGoogle Scholar
  16. 16.
    M. Ferrant and E. R. De Freitas,Mater. sci. eng. A 271, 172 (1999).CrossRefGoogle Scholar
  17. 17.
    Y. Du, T. H. Courtney, and S. Z. Lu,Acta mater. 51, 445 (2003).CrossRefGoogle Scholar
  18. 18.
    I. Seyhan, L. Ratke, W. Bender, and P. W. Voorhees,Metall. mater. trans. A 27, 2470 (1996).CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Non-ferrous MaterialsLanzhou University of TechnologyLanzhouP. R. China

Personalised recommendations