Mechanical and thermoelectric properties of Zn4Sb3 and Zn4Sb3+Zn directly synthesized using elemental powders

  • Soon-Chul Ur
  • Philip Nash
  • Recardo Schwarz


Direct synthesis using elemental powders has been used to produce single-phase polycrystalline ε-Zn4Sb3 specimens as well as composite specimens having ε-Zn4Sb3 (majority phase) and Zn (minority phase). The effect of the Zn phase on the elastic, thermoelectric and mechanical properties was investigated in this alloy system. Thermoelectric properties of single-phase Zn4Sb3 at an ambient temperature are comparable to the published data for the sample prepared by a hot-pressing of ingot-melted alloy powders. Transport properties at room temperature were also evaluated. In addition, Young’s modulus and the bulk modulus of polycrystalline Zn4Sb3 were measured using a resonant-ultrasonic technique. The fracture toughness in this alloy system was determined by measuring the length of cracks that formed at the corners of pyramidal indentations used for hardness tests. It is shown that the addition of Zn increases the fracture toughness, but this is achieved at the cost of reducing the thermoelectric figure of merit.


direct synthesis thermoelectric Young’s modulus fracture toughness Zn4Sb3 


  1. 1.
    T. Caillat, J.-P. Fleurial, and A. Borshchevsky,J. Phy. Chem. Solids 58, 1119 (1997).CrossRefADSGoogle Scholar
  2. 2.
    II. W. Mayer, I. Mikhail, and D. K. Schubert,J. Less Comm. Met. 59, 43 (1978).CrossRefGoogle Scholar
  3. 3.
    A. Borshchevsky, D. T. Morelli, G. P. Meisner, J.-P. Fleurial, and T. Caillat,NASA Tech Brief 25, NPO-19909 (2001).Google Scholar
  4. 4.
    M. Tapiero, S. Tarabichi, J. G. Gies, C. Noguet, J. P. Zielinger, M. Joucla, J. L. Loison, and M. Robino,Solar Energy Mater. 12, 257 (1985).CrossRefADSGoogle Scholar
  5. 5.
    T. J. Zhu, X. B. Zhao, M. Yan, S. II. IIu, T. Li, and B. C. Chou,Mater. Letters 46, 44 (2000).CrossRefGoogle Scholar
  6. 6.
    V. Izard, M. C. Record, and J. C. Tedenac,J. Alloys Comp. 345, 257 (2002).CrossRefGoogle Scholar
  7. 7.
    T. Aizawa and Y. Iwaisako,Proc. 18 th Int. Conf. on Thermoelectrics (ed. D. M. Rowe), p. 173, IEEE, Baltimore, Maryland, USA, (1999).Google Scholar
  8. 8.
    S.-C. Ur, I.-H. Kim, and J.-I. Lee,Met. Mater.-Int. 8, 169 (2002).CrossRefGoogle Scholar
  9. 9.
    L. Battezzati, P. Pappalepore, F. Dubiano, and I. Gallino,Acta mater. 47, 1901 (1999).CrossRefGoogle Scholar
  10. 10.
    S.-C. Ur, P. Nash, and I.-H. Kim,J. Alloys and Comp. 361, 84 (2003).CrossRefGoogle Scholar
  11. 11.
    L. S. Sigl, P. A. Mataga, B. J. Dalgleish, R. M. McMeeking, and A. G. Evans,Acta metall. 36, 945 (1988).CrossRefGoogle Scholar
  12. 12.
    E. M. Schulson,Brittle fracture and toughening, in Phyical metallurgy and processing of intermetallic compounds (eds., N. S. Stoloff and V. K. Sikka), p. 56–164, Chapman & Hall, London, (1994).Google Scholar
  13. 13.
    J. A. Slotwinski and G. V. Blessing,J. Testing and Evaluation (1999-ASTM C1198-01) 27, 2 (1999).Google Scholar
  14. 14.
    R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall,J. Am. Ceramic. Soc. 64, 533 (1981).CrossRefGoogle Scholar
  15. 15.
    R. B. Schwarz and J. E. Vuorinen,J. Alloys and Comp. 310, 243 (2000).CrossRefGoogle Scholar
  16. 16.
    Y.-M Chiang, D. Birmie III, and W. D. Kingery,Physical Ceramics (Principles for Ceramic Science and Engineering). p. 477–500, John Wiley and Sons, New York (1997).Google Scholar
  17. 17.
    J. P. Singh,J. Mater. Sci. 22, 2685 (1987).CrossRefADSGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Dept. of Materials Sci. & Eng./Research Center for Sustainable ECo-Devices and Materials (ReSEM)Chunju National UniversityChungju, ChungbukKorea
  2. 2.Thermal Processing Technology CenterIllinois Institute of TechnologyChicagoUSA
  3. 3.Materials Science and Technology DivisionLos Alamos National LaboratoryUSA

Personalised recommendations