Annals of Nuclear Medicine

, Volume 20, Issue 3, pp 245–251 | Cite as

System design and development of a pinhole SPECT system for quantitative functional imaging of small animals

  • Toshiyuki Aoi
  • Tsutomu Zeniya
  • Hiroshi Watabe
  • Hossain M. Deloar
  • Tetsuya Matsuda
  • Hidehiro Iida
Technical Notes


Recently, small animal imaging by pinhole SPECT has been widely investigated by several researchers. We developed a pinhole SPECT system specially designed for small animal imaging. The system consists of a rotation unit for a small animal and a SPECT camera attached with a pinhole collimator. In order to acquire complete data of the projections, the system has two orbits with angles of 90° and 45° with respect to the object. In this system, the position of the SPECT camera is kept fixed, and the animal is rotated in order to avoid misalignment of the center of rotation (COR). We implemented a three dimensional OSEM algorithm for the reconstruction of data acquired by the system from both the orbitals. A point source experiment revealed no significant COR misalignment using the proposed system. Experiments with a line phantom clearly indicated that our system succeeded in minimizing the misalignment of the COR. We performed a study with a rat and99mTc-HMDP, an agent for bone scan, and demonstrated a dramatic improvement in the spatial resolution and uniformity achieved by our system in comparison with the conventional Feldkamp algorithm with one set of orbital data.

Key words

pinhole SPECT complete data acquisition small animal imaging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chatzüoannou AF. PET scanner dedicated to molecular imaging of small animal models.Mol Imaging Biol 2002; 4: 47–63.CrossRefGoogle Scholar
  2. 2.
    Tai YC, Chatzüoannou AF, Yang Y, Silverman RW, Meadors K, Siegle S, et al. MicroPET II: design, development and initial performance of an improved microPET scanner for small-animal imaging.Phys Med Biol 2003; 48: 1519–1537.PubMedCrossRefGoogle Scholar
  3. 3.
    Jeavons AP, Chandler RA, Dettmar CAR. A 3D HIDAC-PET camera with submillimetre resolution for imaging small animals.IEEE Trans Nucl Sci 1999; 46: 468–473.CrossRefGoogle Scholar
  4. 4.
    Weber DA, Ivanovic M, Franceschi D, Strand S-E, Erlandsson K, Franceschi M, et al. Pinhole SPECT: An approach toin vivo high resolution SPECT imaging in small laboratory animals.J Nucl Med 1994; 35: 342–348.PubMedGoogle Scholar
  5. 5.
    Jaszczak RJ, Li J, Wang H, Zalutsky MR, Coleman RE. Pinhole collimation for ultra-high-resolution small-field-of-view SPECT.Phys MedBiol 1994; 39: 425–437.CrossRefGoogle Scholar
  6. 6.
    Ishizu, K, Mukai T, Yonekura Y, Pagani M, Fujita T, Magata Y, et al. Ultra-high resolution SPECT system using four pinhole collimators for small animal studies.J Nucl Med 1995; 36: 2282–2287.PubMedGoogle Scholar
  7. 7.
    Ogawa K, Kawade T, Nakamura K, Kubo A, Ichihara T. Ultra high resolution SPECT for small animal study.IEEE Trans Nucl Sci 1998; 45: 3122–3126.CrossRefGoogle Scholar
  8. 8.
    Aoi T, Watabe T, Deloar HM, Ogawa M, Teramoto N, Kudomi N, et al. Absolute quantitation of regional myocardial blood flow of rats using dynamic pinhole SPECT. Conference Record of IEEE Nuclear Science and Medical Imaging Conference 2002.Google Scholar
  9. 9.
    Feldkamp LA, Davis LC, Kress JW. Practical cone beam algorithm.J Opt Soc Am 1984: 29: 612–619.CrossRefGoogle Scholar
  10. 10.
    Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography.IEEE Trans Med Imag 1982; MI-1: 113–122.CrossRefGoogle Scholar
  11. 11.
    Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography.J Comput Assist Tomogr 1984; 8: 306–316.PubMedGoogle Scholar
  12. 12.
    Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data.IEEE Trans Med Imag 1994; 13: 601–609.CrossRefGoogle Scholar
  13. 13.
    Vanhove C, Defrise M, Franken PR, Everaert H, Deconinck F, Bossuyt A. Interest of the ordered subsets expectation maximization (OS-EM) algorithm in pinhole single-photon emission tomography reconstruction: a phantom study.Eur J Nucl Med 2000; 27:140–146.PubMedCrossRefGoogle Scholar
  14. 14.
    Tuy HK. An inversion formula for cone-beam reconstruction.SIAM J Appl Math 1983; 43: 546–552.CrossRefGoogle Scholar
  15. 15.
    Grangeat O, Sire P, Guillemaud R, La V. Indirect cone-beam three-dimensional image reconstruction. In:Contemporary Perspectives in Three-Dimensional Biomedical Imaging, Roux C, Coatrieux JL (eds), Amsterdam; IOS Press, 1997: 29–52, 343–350.Google Scholar
  16. 16.
    Kudo H, Saito T. Feasible cone beam scanning methods for exact reconstruction in three-dimensional tomography.J Opt Soc Am A 1990; 7: 2169–2181.PubMedCrossRefGoogle Scholar
  17. 17.
    Kudo H, Saito T. Derivation and implementation of a cone-beam reconstruction algorithm for nonplanar orbits.IEEE Trans Med Imag 1994; 13: 196–211.CrossRefGoogle Scholar
  18. 18.
    Kudo H, Saito T. An extended completeness condition for exact cone-beam reconstruction and its application. Conference Record of IEEE Nuclear Science and Medical Imaging Conference 1994, 1710–1714.Google Scholar
  19. 19.
    Zeniya T, Watabe H, Aoi T, Kim KM, Teramoto N, Hayashi T, et al. A new reconstruction strategy for image improvement in pinhole SPECT.Eur J Nucl Med Mol Imag 2004; 31: 1166–1172.CrossRefGoogle Scholar
  20. 20.
    Li J, Jaszczak RJ, Greer KL, Coleman RE. A filtered backprojection algorithm for pinhole SPECT with a displaced center-of-rotation.Phys Med Biol 1994; 39: 165–176.PubMedCrossRefGoogle Scholar
  21. 21.
    Li J, Jaszczak RJ, Coleman RE. Maximum likelihood reconstruction for pinhole SPECT with a displaced centerof-rotation.IEEE Trans Med Imag 1995; 14: 407–409.CrossRefGoogle Scholar
  22. 22.
    Habraken JB, de Bruin K, Shehata M, Booij J, Bennink R, van Eck Smit BL, et al. Evaluation of high-resolution pinhole SPECT using a small rotating animal.J Nucl Med 2001; 42: 1863–1869.PubMedGoogle Scholar
  23. 23.
    Metzler SD, Greer KL, Jaszczak RJ. Helical pinhole SPECT for small-animal imaging: A method for addressing sampling completeness.IEEE Trans Nucl Sci 2003; 50: 1575–1583.CrossRefGoogle Scholar
  24. 24.
    Deloar HM, Watabe H, Aoi T, Iida H. Evaluation of penetration and scattering components in conventional pinhole SPECT: phantom studies using Monte Carlo simulation.Phys Med Biol 2003; 48: 1–14.CrossRefGoogle Scholar
  25. 25.
    Smith MF, Jaszczak RJ. The effect of gamma ray penetration on angle-dependent sensitivity for pinhole collimation in nuclear medicine.Med Phys 1997; 24: 1701–1709.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Toshiyuki Aoi
    • 1
    • 2
  • Tsutomu Zeniya
    • 1
  • Hiroshi Watabe
    • 1
  • Hossain M. Deloar
    • 1
  • Tetsuya Matsuda
    • 2
  • Hidehiro Iida
    • 1
  1. 1.Department of Investigative RadiologyNational Cardiovascular Center Research InstituteOsakaJapan
  2. 2.Department of System Science, Graduate School of InformaticsKyoto UniversityJapan

Personalised recommendations