Advertisement

The effects of heat treatment condition and Si distribution on order-disorder transition in high Si steels

  • J. S. Shin
  • S. M. Lee
  • B. M. Moon
  • H. M. Lee
  • T. D. Lee
  • Z. H. Lee
Article

Abstract

The decomposition and formation of ordered phases in steels with 5 to 6.5 %Si were investigated by a combined analysis of TEM and electrical resistivity measurements in order to determine the optimal heat treatment conditions for removal of ordered phases. TEM diffraction pattern study revealed that B2 ordered phase in 6.5 %Si steel was sufficiently dissolved by heat treatment at 850 °C for 1 h, and then rapidly re-formed during cooling. The critical cooling rate, above which the suppression of B2 phase formation was possible, increased rapidly with Si content higher than 5.6%. DO3 phase appeared only in the case of as-cast samples containing Si content as high as 6.5%. The measurement of electrical resistivity change during the heat treatment showed that the atomic movement was substantially spurred above 800 °C, resulting in an active order-disorder transition. The removal of solidification segregation is necessary to reduce the amount of B2 ordered phase in the as-cast or hot-rolled state, to lower the heat treatment temperature for dissolution of B2 ordered phase, and to shorten the heat treatment time.

Keywords

high Si steel order-disorder transition micro-segregation electrical resistivity 

References

  1. 1.
    M. F. Littmann,IEEE Transactions on Magnetics 7, 48 (1971).CrossRefADSGoogle Scholar
  2. 2.
    K. I. Arai and K. Ishiyama,J. Magn. Magn. Mater. 133, 233 (1994).CrossRefADSGoogle Scholar
  3. 3.
    Y. Sato, T. Sato, and Y. Okazaki,Mater. Sci. Eng. 99, 73 (1988).CrossRefGoogle Scholar
  4. 4.
    B. D. Cullity,Introduction to Magnetic Materials, p. 518, Addison-Wesley, Mass (1972).Google Scholar
  5. 5.
    B. Viala, J. Degauque, M. Barico, E. Ferrara, and F. Fiorillo,Mater. Sci. Eng. A 212, 62 (1996).CrossRefGoogle Scholar
  6. 6.
    J. Bran≈zovsky, M. Jurisch, V. V. Maslov, W. Neumann, V. K. Nosenko, R. Sellger, and G. Richter,Mater. Sci. Eng. 98, 75 (1988).CrossRefGoogle Scholar
  7. 7.
    P. R. Swann, L. Grånäs, and B. Lehtinen,Metal Science 9, 90 (1975).Google Scholar
  8. 8.
    K. Narita and M. Enokizono,IEEE Transactions on Magnetics 14, 258 (1978).CrossRefADSGoogle Scholar
  9. 9.
    K. Narita and M. Enokizono,IEEE Transactions on Magnetics 15, 911 (1979).CrossRefADSGoogle Scholar
  10. 10.
    J. H. Yu, J. S. Shin, J. S. Bae, Z. H. Lee, T. D. Lee, H. M. Lee and E. J. Lavernia,Mater. Sci. Eng. A 307, 29 (2001).CrossRefGoogle Scholar
  11. 11.
    J. S. Shin, Z. H. Lee, T. D. Lee and E. J. Lavernia,Scripta materialia 45, 725 (2001).CrossRefGoogle Scholar
  12. 12.
    D. R. Poirier and G. H. Geiger,Transport Phenomena in Materials Processing, p. 264, TMS, (1994).Google Scholar
  13. 13.
    H. Y. Kim, J. Matsuda, and K. Maruyama,Met. Mater.-Int. 9, 255 (2003).CrossRefGoogle Scholar
  14. 14.
    W. Pfeiler,JOM 52, 14 (2000).CrossRefGoogle Scholar
  15. 15.
    C. R. Barret, W. D. Nix, and A. S. Tetelman,The Principles of Engineering Materials, p. 383, Prentice-Hall, NJ (1973).Google Scholar
  16. 16.
    M. Abdellaoui, C. D. Mariadassou, and E. Gaffet,J. Alloys and Compounds 259, 241 (1997).CrossRefGoogle Scholar
  17. 17.
    W. Kurz and D. J. Fisher,Fundamentals of Solidification, p. 289, Trans Tech Publications, Switzerland (1989).Google Scholar
  18. 18.
    E. Rabkin, B. Straumal, V. Semenov, W. Gust and B. Predel,Acta metall. mater. 43, 3075 (1995).CrossRefGoogle Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  • J. S. Shin
    • 1
  • S. M. Lee
    • 1
  • B. M. Moon
    • 1
  • H. M. Lee
    • 2
  • T. D. Lee
    • 2
  • Z. H. Lee
    • 2
  1. 1.Korea Institute of Industrial TechnologyIncheonKorea
  2. 2.Korea Advanced Institute of Science and TechnologyDaejeonKorea

Personalised recommendations