Annals of Nuclear Medicine

, Volume 19, Issue 5, pp 373–377 | Cite as

Effects of anesthesia upon18F-FDG uptake in rhesus monkey brains

  • Takashi Itoh
  • Shunichi Wakahara
  • Takayuki Nakano
  • Kazutoshi Suzuki
  • Kaoru Kobayashi
  • Osamu Inoue
Original Article


The kinetics of18F-fluorodeoxyglucose (18F-FDG) in the monkey brain were monitored, and comparisons were made between the conscious state and when under ketamine and pentobarbital anesthesia. Rhesus monkeys were intravenously injected with18F-FDG and followed by 60 min of PET scanning. In the conscious state, the18F-FDG concentration reached a plateau 5 min after intravenous injection. Under ketamine anesthesia, the18F-FDG concentration gradually increased with time in all monitored regions. At 60 min after injection, the concentration in the striatum was about 3.2 times greater than that in the conscious state, and about 4.5 times greater in the cerebral cortex. Under pentobarbital anesthesia, the18F-FDG concentration in the occipital cortex was slightly lower. These findings demonstrate that18F-FDG concentration in the monkey brain is significantly affected by anesthesia. The results also imply the existence of a short-term regulation mechanism for hexokinase activity in intact monkey brain.

Key words

18F-FDG rhesus monkey brain ketamine pentobarbital conscious 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Parsey RV, Mann JJ. Applications of positron emission tomography in psychiatry.Semin Nucl Med 2003; 33:129–135.PubMedCrossRefGoogle Scholar
  2. 2.
    Segall G. Assessment of myocardial viability by positron emission tomography.Nucl Med Commun 2002; 23:323–330.PubMedCrossRefGoogle Scholar
  3. 3.
    Bomanji JB, Costa DC, Ell PJ. Clinical role of positron emission tomography in oncology.Lancet Oncol 2001; 2:157–164.PubMedCrossRefGoogle Scholar
  4. 4.
    Zhuang H, Alavi A. 18-fluorodeoxyglucose positron emission tomographic imaging in the detection and monitoring of infection and inflammation.Semin Nucl Med 2002; 32:47–59.PubMedCrossRefGoogle Scholar
  5. 5.
    Herholz K. PET studies in dementia.Ann Nucl Med 2003; 17:79–89.PubMedCrossRefGoogle Scholar
  6. 6.
    Cohen RM, Semple WE, Gross M, Nordahl TE, King AC, Pickar D, et al. Evidence for common alterations in cerebral glucose metabolism in major affective disorders and schizophrenia.Neuropsychopharmacology 1989; 2:241–254.PubMedCrossRefGoogle Scholar
  7. 7.
    Duncan GE, Miyamoto S, Leipzig JN, Lieberman JA. Comparison of the effects of clozapine, risperidone, and olanzapine on ketamine-induced alterations in regional brain metabolism.J Pharmacol Exp Ther 2000; 293:8–14.PubMedGoogle Scholar
  8. 8.
    Laurie DJ, Pratt JA. Local cerebral glucose utilization following subacute and chronic diazepam pretreatment: differential tolerance.Brain Res 1989; 504:101–111.PubMedCrossRefGoogle Scholar
  9. 9.
    Grasby PM, Sharp T, Allen T, Kelly PA, Grahame-Smith DG. Effects of the 5-HT1A partial agonists gepirone, ipsapirone and buspirone on local cerebral glucose utilization in the conscious rat.Psychopharmacology (Berl) 1992; 106:97–101.CrossRefGoogle Scholar
  10. 10.
    Potkin SG, Buchsbaum MS, Jin Y, Tang C, Telford J, Friedman G, et al. Clozapine effects on glucose metabolic rate in striatum and frontal cortex.J Clin Psychiatry 1994; 55:63–66.PubMedGoogle Scholar
  11. 11.
    Moresco RM, Tettamanti M, Gobbo C, Del Sole A, Ravasi L, Messa C, et al. Acute effect of 3-(4-acetamido)-butyrrillorazepam (DDS2700) on brain function assessed by PET at rest and during attentive tasks.Nucl Med Commun 2001; 22:399–404.PubMedCrossRefGoogle Scholar
  12. 12.
    Frykholm P, Andersson JL, Valtysson J, Silander HC, Hillered L, Perss Olsson Y, et al. A metabolic threshold of irreversible ischemia demonstrated by PET in a middle cerebral artery occlusion-reperfusion primate model.Acta Neurol Scand 2000; 102:18–26.PubMedCrossRefGoogle Scholar
  13. 13.
    Le Mestric C, Chavoixs C, Chapon F, Mezenge F, Epelbaum J, Baron JC. Effects of damage to the basal forebrain on brain glucose utilization—a reevaluation using positron emission tomography in baboons with extensive unilateral excitotoxic lesion.J Cereb Blood Flow Metab 1998; 18:476–490.Google Scholar
  14. 14.
    Kobayashi K, Inoue O, Watanabe Y, Onoe H, Langltrom B. Difference in response of D2 receptor binding between11C-N-methylspiperone and11C-raclopride against anesthetics in rhesus monkey brain.J Neural Transm Gen Sect 1995; 100:147–151.PubMedCrossRefGoogle Scholar
  15. 15.
    Otsuka T, Wei L, Bereczki D, Acuff V, Patlak C, Fenstermacher J. Pentobarbital produces dissimilar changes in glucose influx and utilization in brain.Am J Physiol 1991; 261:265–275. 16. Momosaki S, Hatano K, Kawasumi Y, Kato T, Hosoi R, Kobayashi K, et al. Rat-PET study without anesthesia: anesthetics modify the dopamine D1 receptor binding in rat brain.Synapse 2004; 54: 207-213.Google Scholar
  16. 17.
    Duncan GE, Miyamoto S, Leipzig JN, Lieberman JA. Comparison of brain metabolic activity patterns induced by ketamine, MK-801 and amphetamine in rats: support for NMDA receptor involvement in responses to subanesthetic dose of ketamine.Brain Res 1999; 843:171–183.PubMedCrossRefGoogle Scholar
  17. 18.
    Takechi H, Onoe H, Imamura K, Onoe K, Kakiuchi T, Nishiyama S, et al. Brain activation study by use of positron emission tomography unanesthetized monkeys.Neurosci Lett 1994; 182:279–282.PubMedCrossRefGoogle Scholar
  18. 19.
    Moresco RM, Todde S, Belloli S, Simonelli P, Panzacchi A, Rigamonti M, et al.In vivo imaging of adenosine A(2A) receptors in rat and primate brain using [(11)C]SCH442416.Eur J Nucl Med Mol Imaging 2004.Google Scholar
  19. 20.
    Spaeth N, Wyss MT, Weber B, Scheidegger S, Lutz A, Verwey J, et al Uptake of18F-Fluorocholine,18F-Fluoroetyl-L-Tyrosine, and18F-FDG in Acute Cerebral Radiation Injury in the Rat.J Nucl Med 2004; 45:1931–1938.PubMedGoogle Scholar
  20. 21.
    Duncan GE, Leipzig JN, Mailman RB, Lieberman JA. Differential effects of clozapine and haloperidol on ketamine-induced brain metabolic activation.Brain Res 1998; 812:65–75.PubMedCrossRefGoogle Scholar
  21. 22.
    Potkin SG, Basile VS, Jin Y, Masellis M, Badri F, Keator D, et al. D1 receptor alleles predict PET metabolic correlates of clinical response to clozapine.Mol Psychiatry 2003; 8:109–113.PubMedCrossRefGoogle Scholar
  22. 23.
    Anis NA, Berry SC, Burton NR, Lodge D. The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurons by N-methyl-aspartate.Br J Pharmacol 1983; 79:565–575.PubMedGoogle Scholar
  23. 24.
    Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, et al. Subanesthetic effects of the noncompetitive NMDA antagonist ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses.Arch Gen Psychiatry 1994; 51:199–214.PubMedGoogle Scholar
  24. 25.
    Gregoriou M, Trayer IP, Cornish-Bowden A. Allosteric character of the inhibition of rat-muscle hexokinase by glucose 6-phosphate.Eur J Biochem 1986; 161:171–176.PubMedCrossRefGoogle Scholar
  25. 26.
    Huang JB, Kindzelskii AL, Petty HR. Hexokinase translocation during neutrophil activation, chemotaxis, and phagocytosis: disruption by cytochalasin D, dexamethason and indometacin.Cell Immunol 2002; 218:95–106.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Takashi Itoh
    • 1
  • Shunichi Wakahara
    • 2
  • Takayuki Nakano
    • 2
  • Kazutoshi Suzuki
    • 2
  • Kaoru Kobayashi
    • 3
  • Osamu Inoue
    • 3
  1. 1.Center for Information and SciencesNippon Medical SchoolBunkyo-ku, TokyoJAPAN
  2. 2.Department of Medical ImagingNational Institute of Radiological SciencesJAPAN
  3. 3.School of Allied Health Sciences, Faculty of MedicineOsaka UniversityJAPAN

Personalised recommendations