Annals of Nuclear Medicine

, Volume 19, Issue 2, pp 65–74 | Cite as

Human cerebral circulation: positron emission tomography studies

  • Hiroshi Ito
  • Iwao Kanno
  • Hiroshi Fukuda


We reviewed the literature on human cerebral circulation and oxygen metabolism, as measured by positron emission tomography (PET), with respect to normal values and of regulation of cerebral circulation. A multicenter study in Japan showed that between-center variations in cerebral blood flow (CBF), cerebral blood volume (CBV), cerebral oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2) values were not considerably larger than the corresponding within-center variations. Overall mean ± SD values in cerebral cortical regions of normal human subjects were as follows: CBF = 44.4 ± 6.5 m//100 m//min; CBV = 3.8 ± 0.7 m//100ml; OEF = 0.44 ± 0.06; CMRO2 = 3.3 ± 0.5 m//100 m//min (11 PET centers, 70 subjects). Intrinsic regulation of cerebral circulation involves several factors. Autoregulation maintains CBF in response to changes in cerebral perfusion pressure; chemical factors such as PaCO2 affect cerebral vascular tone and alter CBF; changes in neural activity cause changes in cerebral energy metabolism and CBF; neurogenic control of CBF occurs by sympathetic innervation. Regional differences in vascular response to changes in PaCO2 have been reported, indicating regional differences in cerebral vascular tone. Relations between CBF and CBV during changes in PaCO2 and during changes in neural activity were in good agreement with Poiseuille’s law. The mechanisms of vascular response to neural activation and deactivation were independent on those of responses to PaCO2 changes. CBV in a brain region is the sum of three components: arterial, capillary and venous blood volumes. It has been reported that the arterial blood volume fraction is approximately 30% in humans and that changes in human CBV during changes in PaCO2 are caused by changes in arterial blood volume without changes in venous blood volume. These findings should be considered in future studies of the pathophysiology of cerebrovascular diseases.

Key words

cerebral circulation PET autoregulation PaCO2 neural activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kety SS, Schmidt CF. The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values.J Clin Invest 1948; 27:: 476–483.Google Scholar
  2. 2.
    Kety SS. The theory and applications of the exchange of inert gas at the lungs and tissues.Pharmacol Rev 1951; 3: 1- 41.PubMedGoogle Scholar
  3. 3.
    Lassen NA, Munck O. The cerebral blood flow in man determined by the use of radioactive krypton.Acta Physiol Scand 1955; 33: 30–49.PubMedCrossRefGoogle Scholar
  4. 4.
    Greitz T. A radiologic study of the brain circulation by rapid serial angiography of the carotid artery.Acta Radiol 1956; 46 (Suppl 140): 1–123.Google Scholar
  5. 5.
    Oldendorf WH. Measurement of the mean transit time of cerebral circulation by external detection of an intravenously injected radioisotope.J Nucl Med 1962; 3: 382–398.PubMedGoogle Scholar
  6. 6.
    Gibbs JM, Wise RJ, Leenders KL, Jones T. Evaluation of cerebral perfusion reserve in patients with carotid-artery occlusion.Lancet 1984; 1: 310–314.PubMedCrossRefGoogle Scholar
  7. 7.
    Powers WJ, Grubb RL Jr, Raichle ME. Physiological responses to focal cerebral ischemia in humans.Ann Neurol 1984; 16: 546–552.PubMedCrossRefGoogle Scholar
  8. 8.
    Powers WJ, Grubb RL Jr, Darriet D, Raichle ME. Cerebral blood flow and cerebral metabolic rate of oxygen requirements for cerebral function and viability in humans.J Cereb Blood Flow Metab 1985; 5: 600–608.PubMedCrossRefGoogle Scholar
  9. 9.
    Leblanc R, Yamamoto YL, Tyler JL, Diksic M, Hakim A. Borderzone ischemia.Ann Neurol 1987; 22: 707–713.PubMedCrossRefGoogle Scholar
  10. 10.
    Kanno I, Uemura K, Higano S, Murakami M, Iida H, Miura S, et al. Oxygen extraction fraction at maximally vasodilated tissue in the ischemic brain estimated from the regional CO2 responsiveness measured by positron emission tomogra- phy.J Cereb Blood Flow Metab 1988; 8: 227–235.PubMedCrossRefGoogle Scholar
  11. 11.
    Sette G, Baron JC, Mazoyer B, Levasseur M, Pappata S, Crouzel C. Local brain haemodynamics and oxygen metabolism in cerebrovascular disease. Positron emission tomography.Brain 1989; 112: 931–951.PubMedCrossRefGoogle Scholar
  12. 12.
    Shimosegawa E, Hatazawa J, Inugami A, Fujita H, Ogawa T, Aizawa Y, et al. Cerebral infarction within six hours of onset: prediction of completed infarction with technetium- 99m-HMPAO SPECT.J Nucl Med 1994; 35: 1097–1103.PubMedGoogle Scholar
  13. 13.
    Kuroda S, Houkin K, Kamiyama H, Mitsumori K, Iwasaki Y, Abe H. Long-term prognosis of medically treated patients with internal carotid or middle cerebral artery occlusion: can acetazolamide test predict it?Stroke 2001; 32: pp: 2110–2116.PubMedCrossRefGoogle Scholar
  14. 14.
    Ogasawara K, Ogawa A, Yoshimoto T. Cerebrovascular reactivity to acetazolamide and outcome in patients with symptomatic internal carotid or middle cerebral artery occlusion: a xenon-133 single-photon emission computed tomography study.Stroke 2002; 33: 1857–1862.PubMedCrossRefGoogle Scholar
  15. 15.
    Bock JC, Henrikson O, Gotze AH, Wlodarczyk W, Sander B, Felix R. Magnetic resonance perfusion imaging with gadolinium-DTPA. A quantitative approach for the kinetic analysis of first-pass residue curves.Invest Radiol 1995; 30:: 693–699.CrossRefGoogle Scholar
  16. 16.
    Schreiber WG, Guckel F, Stritzke P, Schmiedek P, Schwartz A, Brix G. Cerebral blood flow and cerebrovascular reserve capacity: estimation by dynamic magnetic resonance imaging.J Cereb Blood Flow Metab 1998; 18: 1143–1156.PubMedCrossRefGoogle Scholar
  17. 17.
    Phelps ME, Huang SC, Hoffman EJ, Kuhl DE. Validation of tomographic measurement of cerebral blood volume with C-l 1-labeled carboxyhemoglobin.J Nucl Med 1979; 20: 328–334.PubMedGoogle Scholar
  18. 18.
    Frackowiak RS, Lenzi GL, Jones T, Heather JD. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using15O and positron emission tomography: theory, procedure, and normal values.J Comput Assist Tomogr 1980; 4: 727–736.PubMedCrossRefGoogle Scholar
  19. 19.
    Herscovitch P, Markham J, Raichle ME. Brain blood flow measured with intravenous H215O. I. Theory and error analysis.J Nucl Med 1983; 24: 782–789.PubMedGoogle Scholar
  20. 20.
    Kanno I, Iida H, Miura S, Murakami M, Takahashi K, Sasaki H, et al. A system for cerebral blood flow measurement using an H215O autoradiographic method and positron emission tomography.J Cereb Blood Flow Metab 1987; 7:: 143–153.CrossRefGoogle Scholar
  21. 21.
    Martin WR, Powers WJ, Raichle ME. Cerebral blood volume measured with inhaled C15O and positron emission tomography.J Cereb Blood Flow Metab 1987; 7: 421–426.PubMedCrossRefGoogle Scholar
  22. 22.
    Mintun MA, Raichle ME, Martin WR, Herscovitch P. Brain oxygen utilization measured with 0-15 radiotracers and positron emission tomography.J Nucl Med 1984; 25:177–187.PubMedGoogle Scholar
  23. 23.
    Lassen NA. Brain. In:Peripheral circulation, Johnson PC (ed), New York; John Wiley &; Sons, 1978: 337–358.Google Scholar
  24. 24.
    Raichle ME, Martin WR, Herscovitch P, Mintun MA, Markham J. Brain blood flow measured with intravenous H2 15O. II. Implementation and validation.J Nucl Med 1983; 24: 790–798.PubMedGoogle Scholar
  25. 25.
    Kanno I, Lammertsma AA, Heather JD, Gibbs JM, Rhodes CG, Clark JC, et al. Measurement of cerebral blood flow using bolus inhalation of C15O2 and positron emission tomography: description of the method and its comparison with the C15O2 continuous inhalation method.J Cereb Blood Flow Metab 1984; 4: 224–234.PubMedCrossRefGoogle Scholar
  26. 26.
    Senda M, Buxton RB, Alpert NM, Correia JA, Mackay BC, Weise SB, et al. The15O steady-state method: correction for variation in arterial concentration.J Cereb Blood Flow Metab 1988; 8: 681–690.PubMedCrossRefGoogle Scholar
  27. 27.
    Sadato N, Yonekura Y, Senda M, Iwasaki Y, Matoba N, Tamaki N, et al. PET and the autoradiographic method with continuous inhalation of oxygen-15-gas: theoretical analysis and comparison with conventional steady-state methods.J Nucl Med 1993; 34: 1672–1680.PubMedGoogle Scholar
  28. 28.
    Ito H, Kanno I, Kato C, Sasaki T, Ishii K, Ouchi Y, et al. Database of normal human cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with15O-labelled carbon dioxide or water, carbon monoxide and oxygen: a multicentre study in Japan.Eur J Nucl Med Mol Imaging 2004; 31: 635–643.PubMedCrossRefGoogle Scholar
  29. 29.
    Yamaguchi T, Kanno I, Uemura K, Shishido F, Inugami A, Ogawa T, et al. Reduction in regional cerebral metabolic rate of oxygen during human aging.Stroke 1986; 17:1220–1228.PubMedCrossRefGoogle Scholar
  30. 30.
    Leenders KL, Perani D, Lammertsma AA, Heather JD, Buckingham P, Healy MJ, et al. Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age.Brain 1990; 113: 27–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Hatazawa J, Fujita H, Kanno I, Satoh T, Iida H, Miura S, et al. Regional cerebral blood flow, blood volume, oxygen extraction fraction, and oxygen utilization rate in normal volunteers measured by the autoradiographic technique and the single breath inhalation method.Ann Nucl Med 1995; 9:: 15–21.CrossRefGoogle Scholar
  32. 32.
    Hoedt-Rasmussen K. Regional cerebral flow in man measured externally following intra-arterial administration of85Kr orl33Xe dissolved in saline.Acta Neurol Scand Suppl 1965; 14: 65–68.PubMedGoogle Scholar
  33. 33.
    Ingvar DH, Cronqvist S, Ekberg R, Risberg J, Hoedt- Rasmussen K. Normal values of regional cerebral blood flow in man, including flow and weight estimates of gray and white matter. A preliminary summary.Acta Neurol Scand Suppl 1965; 14: 72–78.PubMedGoogle Scholar
  34. 34.
    Hoedt-Rasmussen K, Sveinsdottir E, Lassen NA. Regional cerebral blood flow in man determined by intra-arterial injection of radioactive inert gas.Circ Res 1966; 18: 237–247.PubMedCrossRefGoogle Scholar
  35. 35.
    Herscovitch P, Raichle ME. Effect of tissue heterogeneity on the measurement of cerebral blood flow with the equilibrium C15C2 inhalation technique.J Cereb Blood Flow Metab 1983; 3: 407–415.PubMedCrossRefGoogle Scholar
  36. 36.
    Iida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K. A determination of the regional brain/blood partition coefficient of water using dynamic positron emission tomography.J Cereb Blood Flow Metab 1989; 9: 874–885.PubMedCrossRefGoogle Scholar
  37. 37.
    Winchell HS, Baldwin RM, Lin TH. Development of 1-123- labeled amines for brain studies: localization of 1-123 iodophenylalkyl amines in rat brain.J Nucl Med 1980; 21:: 940–946.Google Scholar
  38. 38.
    Winchell HS, Horst WD, Braun L, Oldendorf WH, Hattner R, Parker H. N-isopropyl-[l23I]p-iodoamphetamine: single- pass brain uptake and washout; binding to brain synapto- somes; and localization in dog and monkey brain.J Nucl Med 1980; 21: 947–952.PubMedGoogle Scholar
  39. 39.
    Ito H, Iida H, Bloomfield PM, Murakami M, Inugami A, Kanno I, et al. Rapid calculation of regional cerebral blood flow and distribution volume using iodine-123-iodoam- phetamine and dynamic SPECT.J Nucl Med 1995; 36:: 531–536.Google Scholar
  40. 40.
    Sharp PF, Smith FW, Gemmell HG, Lyall D, Evans NT, Gvozdanovic D, et al. Technetium-99m HM-PAO stereo- isomers as potential agents for imaging regional cerebral blood flow: human volunteer studies.J Nucl Med 1986; 27:: 171–177.Google Scholar
  41. 41.
    Neirinckx RD, Canning LR, Piper IM, Nowotnik DP, Pickett RD, Holmes RA, et al. Technetium-99m d,/-HM- PAO: a new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion.J Nucl Med 1987; 28:: 191–202.Google Scholar
  42. 42.
    Walovitch RC, Hill TC, Garrity ST, Cheesman EH, Burgess BA, O’Leary DH, et al. Characterization of technetium- 99m-L,L-ECD for brain perfusion imaging, Part 1: Pharmacology of technetium-99m ECD in nonhuman primates.J NuclMed 1989; 30: 1892–1901.Google Scholar
  43. 43.
    Leveille J, Demonceau G, De Roo M, Rigo P, Taillefer R, Morgan RA, et al. Characterization of technetium-99m-L,L- ECD for brain perfusion imaging, Part 2: Biodistribution and brain imaging in humans.J Nucl Med 1989; 30: 1902- 1910.PubMedGoogle Scholar
  44. 44.
    Fox PT, Mintun MA, Reiman EM, Raichle ME. Enhanced detection of focal brain responses using intersubject averaging and change-distribution analysis of subtracted PET images.J Cereb Blood Flow Metab 1988; 8: 642–653.PubMedCrossRefGoogle Scholar
  45. 45.
    Friston KJ, Frith CD, Liddle PF, Dolan RJ, Lammertsma AA, Frackowiak RS. The relationship between global and local changes in PET scans.J Cereb Blood Flow Metab 1990; 10: 458–66.PubMedCrossRefGoogle Scholar
  46. 46.
    Greitz T, Bohm C, Holte S, Eriksson L. A computerized brain atlas: construction, anatomical content, and some applications.J Comput Assist Tomogr 1991; 15: 26–38.PubMedCrossRefGoogle Scholar
  47. 47.
    Roland PE, Graufelds CJ, Wahlin J, Ingelman L, Andersson M, Ledberg A, et al. Human brain atlas: For high-resolution functional and anatomical mapping.Human Brain Mapping 1994; 1: 173–184.CrossRefGoogle Scholar
  48. 48.
    Minoshima S, Koeppe RA, Frey KA, Kuhl DE. Anatomic standardization: linear scaling and nonlinear warping of functional brain images.J Nucl Med 1994; 35: 1528–1537.PubMedGoogle Scholar
  49. 49.
    Koyama M, Kawashima R, Ito H, Ono S, Sato K, Goto R, et al. SPECT imaging of normal subjects with technetium- 99m-HMPAO and technetium-99m-ECD.J Nucl Med 1997; 38: 587–592.PubMedGoogle Scholar
  50. 50.
    Inoue K, Nakagawa M, Goto R, Kinomura S, Sato T, Sato K, et al. Regional differences between99mTc-ECD and99mTc-HMPAO SPET in perfusion changes with age and gender in healthy adults.Eur J Nucl Med Mol Imaging 2003; 30: 1489–1497.PubMedCrossRefGoogle Scholar
  51. 51.
    Martin AJ, Friston KJ, Colebatch JG, Frackowiak RS. Decreases in regional cerebral blood flow with normal aging.J Cereb Blood Flow Metab 1991; 11: 684–689.PubMedCrossRefGoogle Scholar
  52. 52.
    Goto R, Kawashima R, Ito H, Koyama M, Sato K, Ono S, et al. A comparison of Tc-99m HMPAO brain SPECT images of young and aged normal individuals.Ann Nucl Med 1998; 12: 333–339.PubMedCrossRefGoogle Scholar
  53. 53.
    Ito H, Kawashima R, Awata S, One S, Sato K, Goto R, et al. Hypoperfusion in the limbic system and prefrontal cortex in depression: SPECT with anatomic standardization technique.J Nucl Med 1996; 37: 410–414.PubMedGoogle Scholar
  54. 54.
    Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease.Ann Neurol 1997; 42: 85–94.PubMedCrossRefGoogle Scholar
  55. 55.
    Ishii K, Sasaki M, Yamaji S, Sakamoto S, Kitagaki H, Mori E. Demonstration of decreased posterior cingulate perfusion in mild Alzheimer’s disease by means of H2 15O positron emission tomography.Eur J Nucl Med 1997; 24: 670–673.PubMedGoogle Scholar
  56. 56.
    Paulson OB, Strandgaard S, Edvinsson L. Cerebral auto- regulation.Cerebrovasc Brain Metab Rev 1990; 2: 161- 192.PubMedGoogle Scholar
  57. 57.
    Strandgaard S, MacKenzie ET, Sengupta D, Rowan JO, Lassen NA, Harper AM. Upper limit of autoregulation of cerebral blood flow in the baboon.Circ Res 1974; 34:435–440.PubMedCrossRefGoogle Scholar
  58. 58.
    Strandgaard S, Jones JV, MacKenzie ET, Harper AM. pper limit of cerebral blood flow autoregulation in experimental renovascular hypertension in the baboon.Circ Res 1975; 37: 164–167.PubMedCrossRefGoogle Scholar
  59. 59.
    Skinhoj E, Strandgaard S. Pathogenesis of hypertensive encephalopathy.Lancet 1973; 1: 461–462.PubMedCrossRefGoogle Scholar
  60. 60.
    Hauser RA, Lacey DM, Knight MR. Hypertensive encephalopathy. Magnetic resonance imaging demonstration of reversible cortical and white matter lesions.Arch Neurol 1988; 45: 1078–1083.PubMedCrossRefGoogle Scholar
  61. 61.
    Schwartz RB, Jones KM, Kalina P, Bajakian RL, Mantello MT, Garada B, et al. Hypertensive encephalopathy: findings on CT, MR imaging, and SPECT imaging in 14 cases.Am J Roentgenol 1992; 159: 379–383.CrossRefGoogle Scholar
  62. 62.
    Strandgaard S. utoregulation of cerebral blood flow in hypertensive patients. The modifying influence of prolonged antihypertensive treatment on the tolerance to acute, drug-induced hypotension.Circulation 1976; 53: 720–727.PubMedCrossRefGoogle Scholar
  63. 63.
    Kety SS, Schmidt CF. The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men.J Clin Invest 1948; 27: 484–492.PubMedCrossRefGoogle Scholar
  64. 64.
    Raper AJ, Kontos HA, Patterson JL Jr. Response of pial precapillary vessels to changes in arterial carbon dioxide tension.Circu Res 1971; 28: 518–523.Google Scholar
  65. 65.
    Heistad DD, Marcus ML, Ehrhardt JC, Abboud FM. Effect of stimulation of carotid chemoreceptors on total and regional cerebral blood flow.Circ Res 1976; 38: 20–25.PubMedCrossRefGoogle Scholar
  66. 66.
    Heistad DD, Kontos HA. Cerebral circulation. In:Handbook of physiology. The cardiovascular system. Peripheral circulation and organ blood flow, Part 1, Shepherd JT, Abboud FM (eds), Bethesda; American Physiological Society, 1983: 137–182.Google Scholar
  67. 67.
    Ito H, Yokoyama I, Iida H, Kinoshita T, Hatazawa J, Shimosegawa E, et al. Regional differences in cerebral vascular response to PaCO2 changes in humans measured by positron emission tomography.J Cereb Blood Flow Metab 2000; 20: 1264–1270.PubMedCrossRefGoogle Scholar
  68. 68.
    Gotoh F, Tazaki Y, Meyer JS. Transport of gases through brain and their extravascular vasomotor action.Exp Neurol 1961; 4: 48–58.PubMedCrossRefGoogle Scholar
  69. 69.
    Lassen NA. Brain extracellular pH: the main factor controlling cerebral blood flow.Scand J Clin Lab Invest 1968; 22:: 247–251.CrossRefGoogle Scholar
  70. 70.
    Wahl M, Deetjen P, Thurau K, Ingvar DH, Lassen NA. Micropuncture evaluation of the importance of perivascular pH for the arteriolar diameter on the brain surface.Pflugers Arch 1970; 316: 152–163.PubMedCrossRefGoogle Scholar
  71. 71.
    Greenberg JH, Reivich M. Response time of cerebral arte- rioles to alterations in extravascular fluid pH.Microvascular Research 1977; 14: 383–393.CrossRefGoogle Scholar
  72. 72.
    Kontos HA, Raper AJ, Patterson JL. Analysis of vasoactivity of local pH, PCO2 and bicarbonate on pial vessels.Stroke 1977; 8: 358–360.PubMedCrossRefGoogle Scholar
  73. 73.
    Kontos HA, Wei EP, Raper AJ, Patterson JL Jr. Local mechanism of CO2 action of cat pial arterioles.Stroke 1977; 8: 226–229.PubMedCrossRefGoogle Scholar
  74. 74.
    Severinghaus JW, Lassen N. Step hypocapnia to separate arterial from tissue PCO2 in the regulation of cerebral blood flow.Circ Res 1967; 20: 272–278.PubMedCrossRefGoogle Scholar
  75. 75.
    Shimosegawa E, Kanno I, Hatazawa J, Fujita H, Iida H, Miura S, et al. Photic stimulation study of changing the arterial partial pressure level of carbon dioxide.J Cereb Blood Flow Metab 1995; 15: 111–114.PubMedCrossRefGoogle Scholar
  76. 76.
    Nishimura S, Suzuki A, Hatazawa J, Nishimura H, Shirane R, Yasui N, et al. Cerebral blood-flow responses to induced hypotension and to CO2 inhalation in patients with major cerebral artery occlusive disease: a positron-emission tomography study.Neuroradiology 1999; 41: 73–79.PubMedCrossRefGoogle Scholar
  77. 77.
    Herold S, Brown MM, Frackowiak RS, Mansfield AO, Thomas DJ, Marshall J. Assessment of cerebral haemody- namic reserve: correlation between PET parameters and CO2 reactivity measured by the intravenous133xenon injection technique.J Neurol Neurosurg Psychiatry 1988; 51: 1045–1050.PubMedCrossRefGoogle Scholar
  78. 78.
    Levine RL, Dobkin JA, Rozental JM, Satter MR, Nickles RJ. Blood flow reactivity to hypercapnia in strictly unilateral carotid disease: preliminary results.J Neurol Neurosurg Psychiatry 1991; 54: 204–209.PubMedCrossRefGoogle Scholar
  79. 79.
    Kuwabara Y, Ichiya Y, Sasaki M, Yoshida T, Masuda K, Matsushima T, et al. Response to hypercapnia in moyamoya disease. Cerebrovascular response to hypercapnia in pedi- atric and adult patients with moyamoya disease.Stroke 1997; 28: 701–707.PubMedCrossRefGoogle Scholar
  80. 80.
    Yamaguchi F, Meyer JS, Sakai F, Yamamoto M. Normal human aging and cerebral vasoconstrictive responses to hypocapnia.J Neurol Sci 1979; 44: 87–94.PubMedCrossRefGoogle Scholar
  81. 81.
    Ito H, Kanno I, Ibaraki M, Hatazawa J. Effect of aging on cerebral vascular response to PaCO2 changes in humans as measured by positron emission tomography.J Cereb Blood Flow Metab 2002; 22: 997–1003.PubMedCrossRefGoogle Scholar
  82. 82.
    Lartaud I, Bray-des-Boscs L, Chillon JM, Atkinson J, Capdeville-Atkinson C.In vivo cerebrovascular reactivity in Wistar and Fischer 344 rat strains during aging.Am J Physiol 1993; 264: H851–858.PubMedGoogle Scholar
  83. 83.
    Tamaki K, Nakai M, YokotaT, Ogata J. Effects of aging and chronic hypertension on cerebral blood flow and cerebrovascular CO2 reactivity in the rat.Gerontology 1995; 41:: 11–17.CrossRefGoogle Scholar
  84. 84.
    Gobel U, Klein B, Schrock H, Kuschinsky W. Lack of capillary recruitment in the brains of awake rats during hypercapnia.J Cereb Blood Flow Metab 1989; 9:491–499.PubMedCrossRefGoogle Scholar
  85. 85.
    Duelli R, Kuschinsky W. Changes in brain capillary diameter during hypocapnia and hypercapnia.J Cereb Blood Flow Metab 1993; 13: 1025–1028.PubMedCrossRefGoogle Scholar
  86. 86.
    Grubb RL Jr, Raichle ME, Eichling JO, Ter-Pogossian MM. The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time.Stroke 1974; 5: 630–639.PubMedCrossRefGoogle Scholar
  87. 87.
    Bereczki D, Wei L, Otsuka T, Hans FJ, Acuff V, Patlak C, et al. Hypercapnia slightly raises blood volume and sizably elevates flow velocity in brain microvessels.Am J Physiol 1993; 264: H1360–1369.PubMedGoogle Scholar
  88. 88.
    Keyeux A, Ochrymowicz-Bemelmans D, Charlier AA. Induced response to hypercapnia in the two-compartment total cerebral blood volume: influence on brain vascular reserve and flow efficiency.J Cereb Blood Flow Metab 1995; 15: 1121–1131.PubMedCrossRefGoogle Scholar
  89. 89.
    Lee SP, Duong TQ, Yang G, Iadecola C, Kim SG. Relative changes of cerebral arterial and venous blood volumes during increased cerebral blood flow: implications for BOLD fMRI.Magn Reson Med 2001; 45: 791–800.PubMedCrossRefGoogle Scholar
  90. 90.
    Ito H, Kanno I, Ibaraki M, Hatazawa J, Miura S. Changes in human cerebral blood flow and cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography.J Cereb Blood Flow Metab 2003; 23: 665–670.PubMedCrossRefGoogle Scholar
  91. 91.
    Fox PT, Raichle ME. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects.Proc Natl Acad Sci USA 1986; 83: 1140–1144.PubMedCrossRefGoogle Scholar
  92. 92.
    Seitz RJ, Roland PE. Vibratory stimulation increases and decreases the regional cerebral blood flow and oxidative metabolism: a positron emission tomography (PET) study.Acta Neurol Scand 1992; 86: 60–67.PubMedCrossRefGoogle Scholar
  93. 93.
    Vafaee MS, Gjedde A. Model of blood-brain transfer of oxygen explains nonlinear flow-metabolism coupling during stimulation of visual cortex.J Cereb Blood Flow Metab 2000; 20: 747–754.PubMedCrossRefGoogle Scholar
  94. 94.
    Ito H, Ibaraki M, Kanno I, Fukuda H, Miura S. Changes in cerebral blood flow and cerebral oxygen metabolism during neural activation measured by positron emission tomography: comparison with blood oxygenation level- dependent contrast measured by functional magnetic resonance imaging.J Cereb Blood Flow Metab 2005; 25: 371- 377.PubMedCrossRefGoogle Scholar
  95. 95.
    Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation.Proc Natl Acad Sci USA 1990; 87: 9868–9872.PubMedCrossRefGoogle Scholar
  96. 96.
    Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging.Proc Natl Acad Sci USA 1992; 89:5951–5955.PubMedCrossRefGoogle Scholar
  97. 97.
    Turner R, Howseman A, Rees GE, Josephs O, Friston K. Functional magnetic resonance imaging of the human brain: data acquisition and analysis.Exp Brain Res 1998; 123: 5–12.PubMedCrossRefGoogle Scholar
  98. 98.
    Raichle ME. Behind the scenes of functional brain imaging: a historical and physiological perspective.Proc Natl Acad Sci USA 1998; 95: 765–772.PubMedCrossRefGoogle Scholar
  99. 99.
    Lenzi GL, Frackowiak RS, Jones T. Cerebral oxygen metabolism and blood flow in human cerebral ischemic infarction.J Cereb Blood Flow Metab 1982; 2: 321–335.PubMedCrossRefGoogle Scholar
  100. 100.
    Martin WR, Raichle ME. Cerebellar blood flow and metabolism in cerebral hemisphere infarction.Ann Neurol 1983; 14: 168–176.PubMedCrossRefGoogle Scholar
  101. 101.
    Pantano P, Baron JC, Samson Y, Bousser MG, Derouesne C, Comar D. Crossed cerebellar diaschisis. Further studies.Brain 1986; 109: 677–694.PubMedCrossRefGoogle Scholar
  102. 102.
    Yamauchi H, Fukuyama H, Kimura J. Hemodynamic and metabolic changes in crossed cerebellar hypoperfusion.Stroke 1992; 23: 855–860.PubMedCrossRefGoogle Scholar
  103. 103.
    Ito H, Kanno I, Shimosegawa E, Tamura H, Okane K, Hatazawa J. Hemodynamic changes during neural deactivation in human brain: a positron emission tomography study of crossed cerebellar diaschisis.Ann Nucl Med 2002; 16: 249–254.PubMedCrossRefGoogle Scholar
  104. 104.
    Bogsrud TV, Rootwelt K, Russell D, Nyberg-Hansen R. Acetazolamide effect on cerebellar blood flow in crossed cerebral-cerebellar diaschisis.Stroke 1990; 21: 52–55.PubMedCrossRefGoogle Scholar
  105. 105.
    Ishii K, Kanno I, Uemura K, Hatazawa J, Okudera T, Inugami A, et al. Comparison of carbon dioxide respon- siveness of cerebellar blood flow between affected and unaffected sides with crossed cerebellar diaschisis.Stroke 1994; 25: 826–830.PubMedCrossRefGoogle Scholar
  106. 106.
    Ngai AC, Meno JR, Winn HR. Simultaneous measurements of pial arteriolar diameter and laser-Doppler flow during somatosensory stimulation.J Cereb Blood Flow Metab 1995; 15: 124–127.PubMedCrossRefGoogle Scholar
  107. 107.
    Malonek D, Dirnagl U, Lindauer U, Yamada K, Kanno I, Grinvald A. Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation.Proc Natl Acad Sci USA 1997; 94: 14826–14831.PubMedCrossRefGoogle Scholar
  108. 108.
    Matsuura T, Fujita H, Seki C, Kashikura K, Yamada K, Kanno I. CBF change evoked by somatosensory activation measured by laser-Doppler flowmetry: independent evaluation of RBC velocity and RBC concentration.Jpn J Physiol 1999; 49: 289–296.PubMedCrossRefGoogle Scholar
  109. 109.
    Kuschinsky W, Paulson OB. Capillary circulation in the brain.Cerebrovasc Brain Metab Rev 1992; 4: 261–286.PubMedGoogle Scholar
  110. 110.
    Mandeville JB, Marota JJ, Ayata C, Zaharchuk G, Moskowitz MA, Rosen BR, et al. Evidence of a cere- brovascular postarteriole windkessel with delayed compliance.J Cereb Blood Flow Metab 1999; 19: 679–689.PubMedCrossRefGoogle Scholar
  111. 111.
    Fox PT, Raichle ME. Stimulus rate dependence of regional cerebral blood flow in human striate cortex, demonstrated by positron emission tomography.J Neurophysiol 1984; 51: 1109–1120.PubMedGoogle Scholar
  112. 112.
    Fox PT, Raichle ME. Stimulus rate determines regional brain blood flow in striate cortex.Ann Neurol 1985; 17:: 303–305.PubMedCrossRefGoogle Scholar
  113. 113.
    Belliveau JW, Kennedy DN Jr, McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, et al. Functional mapping of the human visual cortex by magnetic resonance imaging.Science 1991; 254: 716–719.PubMedCrossRefGoogle Scholar
  114. 114.
    Ito H, Takahashi K, Hatazawa J, Kim SG, Kanno I. Changes in human regional cerebral blood flow and cerebral blood volume during visual stimulation measured by positron emission tomography.J Cereb Blood Flow Metab 2001; 21: 608–612.PubMedCrossRefGoogle Scholar
  115. 115.
    Inao S, Tadokoro M, Nishino M, Mizutani N, Terada K, Bundo M, et al. Neural activation of the brain with hemo- dynamic insufficiency.J Cereb Blood Flow Metab 1998; 18: 960–967.PubMedCrossRefGoogle Scholar
  116. 116.
    Nelson E, Rennels M. Innervation of intracranial arteries.Brain 1970; 93: 475–490.PubMedCrossRefGoogle Scholar
  117. 117.
    Branston NM. Neurogenic control of the cerebral circulation.Cerebrovasc Brain Metab Rev 1995; 7: 338–349.PubMedGoogle Scholar
  118. 118.
    Kobayashi S, Waltz AG, Rhoton AL Jr. Effects of stimulation of cervical sympathetic nerves on cortical blood flow and vascular reactivity.Neurology 1971; 21: 297- 302.PubMedCrossRefGoogle Scholar
  119. 119.
    D’Alecy LG, Feigl EO. Sympathetic control of cerebral blood flow in dogs.Circ Res 1972; 31: 267–283.PubMedCrossRefGoogle Scholar
  120. 120.
    Harper AM, Deshmukh VD, Rowan JO, Jennett WB. The influence of sympathetic nervous activity on cerebral blood flow.Arch Neurol 1972; 27: 1–6.PubMedCrossRefGoogle Scholar
  121. 121.
    Salanga VD, Waltz AG. Regional cerebral blood flow during stimulation of seventh cranial nerve.Stroke 1973; 4: 213–217.PubMedCrossRefGoogle Scholar
  122. 122.
    Umeyama T, Kugimiya T, Ogawa T, Kandori Y, Ishizuka A, Hanaoka K. Changes in cerebral blood flow estimated after stellate ganglion block by single photon emission computed tomography.J Auton Nerv Syst 1995; 50: 339–346.PubMedCrossRefGoogle Scholar
  123. 123.
    Ito H, Kanno I, Hatazawa J, Miura S. Changes in human cerebral blood flow and myocardial blood flow during mental stress measured by dual positron emission tomography.Ann Nucl Med 2003; 17: 381–386.PubMedCrossRefGoogle Scholar
  124. 124.
    Lammertsma AA, Wise RJ, Heather JD, Gibbs JM, Leenders KL, Frackowiak RS, et al. Correction for the presence of intravascular oxygen-15 in the steady-state technique for measuring regional oxygen extraction ratio in the brain: 2. results in normal subjects and brain tumour and stroke patients.J Cereb Blood Flow Metab 1983; 3: pp: 425–431.PubMedCrossRefGoogle Scholar
  125. 125.
    Ohta S, Meyer E, Fujita H, Reutens DC, Evans A, Gjedde A. Cerebral [l5O]water clearance in humans determined by PET: I. Theory and normal values.J Cereb Blood Flow Metab 1996; 16: 765–780.PubMedCrossRefGoogle Scholar
  126. 126.
    Mellander S, Johansson B. Control of resistance, exchange, and capacitance functions in the peripheral circulation.Pharmacol Rev 1968; 20: 117–196.PubMedGoogle Scholar
  127. 127.
    Ito H, Kanno I, Iida H, Hatazawa J, Shimosegawa E, Tamura H, et al. Arterial fraction of cerebral blood volume in humans measured by positron emission tomography.Ann Nucl Med 2001; 15: 111–116.PubMedCrossRefGoogle Scholar
  128. 128.
    Pawlik G, Rackl A, Bing RJ. Quantitative capillary topography and blood flow in the cerebral cortex of cats: anin vivo microscopic study.Brain Res 1981; 208: 35–58.PubMedCrossRefGoogle Scholar
  129. 129.
    Ito H, Ibaraki M, Kanno I, Fukuda H, Miura S. Changes in the arterial fraction of human cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography.J Cereb Blood Flow Metab 2005; 25: in press.Google Scholar
  130. 130.
    Okazawa H, Yamauchi H, Sugimoto K, Toyoda H, Kishibe Y, Takahashi M. Effects of acetazolamide on cerebral blood flow, blood volume, and oxygen metabolism: a positron emission tomography study with healthy volunteers.J Cereb Blood Flow Metab 2001; 21: 1472–1479.PubMedCrossRefGoogle Scholar
  131. 131.
    Edvinsson L, Owman C, Sjoberg NO. Autonomic nerves, mast cells, and amine receptors in human brain vessels. A histochemical and pharmacological study.Brain Res 1976; 115:377–393.PubMedCrossRefGoogle Scholar
  132. 132.
    Faraci FM, Brian JE Jr. Nitric oxide and the cerebral circulation.Stroke 1994; 25: 692–703.PubMedCrossRefGoogle Scholar
  133. 133.
    Faraci FM, Sobey CG. Role of potassium channels in regulation of cerebral vascular tone.J Cereb Blood Flow Metab 1998; 18: 1047–1063.PubMedCrossRefGoogle Scholar
  134. 134.
    Ito H, Kanno I, Takahashi K, Ibaraki M, Miura S. Regional distribution of human cerebral vascular mean transit time measured by positron emission tomography.Neuroimage 2003; 19:1163–1169.PubMedCrossRefGoogle Scholar
  135. 135.
    Beausang-Linder M, Bill A. Cerebral circulation in acute arterial hypertension-protective effects of sympathetic nervous activity.Acta Physiol Scand 1981; 111: 193–199.PubMedCrossRefGoogle Scholar
  136. 136.
    Caplan LR. Intracerebral haemorrhage.Lancet 1992; 339:: 656–658.CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Nuclear Medicine and Radiology, Division of Brain SciencesInstitute of Development, Aging and Cancer Tohoku UniversitySendaiJapan
  2. 2.Department of Radiology and Nuclear MedicineAkita Research Institute of Brain and Blood VesselsJapan

Personalised recommendations