Skip to main content
Log in

Effect of deformation temperature on the formation of ultrafine grains in the 5052 Al alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Effects of the annealing temperature on microstructures and mechanical properties of 5052 Al alloy that have received 88% reduction at cryogenic temperature were investigated for an annealing temperature range of 150–300°C, in comparison with those at room temperature. Equiaxed grains, approximately 200nm in diameter, were observed in 5052 Al alloy deformed 88% and annealed at 200°C for 1 h. When compared with the deformation at room temperature, the deformation at cryogenic temperature showed higher strengths and equivalent elongation after annealing at temperatures below 200°C. However, for annealing above 250°C, materials deformed at cryogenic temperature showed lower strength than those deformed at room temperature. This behavior might be attributable to the higher rate of recrystallization and growth in materials deformed at cryogenic temperature during annealing, due to the lager density of dislocations accumulated during the deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Furukawa, Z. Horita, and T. G. Langdon,Met. Mater.-Int. 9, 141 (2003).

    Article  CAS  Google Scholar 

  2. I. V. Alexandrov, A. A. Dubravina, A. R. Kilmametov, V. U. Kazykhanov, and R. Z. Valiev,Met. Mater.-Int. 9, 151 (2003).

    Article  CAS  Google Scholar 

  3. N. Tsuji, Y. Ito, Y. Saito, and Y. Minamono,Scripta mater. 47, 893 (2002).

    Article  CAS  Google Scholar 

  4. R. Valiev,Met. Mater.-Int. 7, 413 (2001).

    Article  CAS  Google Scholar 

  5. I. Alexandrov,Met. Mater.-Int. 7, 565 (2001).

    CAS  Google Scholar 

  6. Y. Saito, H. Utsunomiya, and T. Sakai,Acta mater. 47, 579 (1999).

    Article  CAS  Google Scholar 

  7. R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov,Prog. Mater. Sci. 45, 103 (2000).

    Article  CAS  Google Scholar 

  8. Z. Y. Liu, L. X. Hu, and E. D. Wang,Mater. Sci. Eng. A. 255, 16 (1998).

    Article  Google Scholar 

  9. M. Richert, Q. Liu, and N. Hansen,Mater. Sci. Eng. A. 260, 275 (1999).

    Article  Google Scholar 

  10. Y. Wang, M. Chen, F. Zhou, and E. Ma,Nature 419, 912 (2002).

    Article  PubMed  ADS  CAS  Google Scholar 

  11. K. T. Park and D. H. Shin,Matall. Mater. Trans. A 33, 705 (2002).

    Article  MathSciNet  Google Scholar 

  12. J. S. Hayes, R. Keyte, and P. B. Prangnell,Mater. Sci. & Tech. 16, 1259 (2000).

    Article  CAS  Google Scholar 

  13. D. G. Morris, and M. A. Munoz-Morris,Acta materialia,50, 4047 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Nam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Y.B., Shin, D.H. & Nam, W.J. Effect of deformation temperature on the formation of ultrafine grains in the 5052 Al alloy. Met. Mater. Int. 10, 407–410 (2004). https://doi.org/10.1007/BF03027340

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03027340

Keywords

Navigation