Corrosion behavior between dental implant abutment and cast gold alloy



Two types of HL hexed abutments of a Steri-Oss system, gold/plastic coping and gold coping, were compared in terms of corrosion behavior. The anodic polarization behavior and the galvanic corrosion between abutments and Type III gold alloys, before and after casting, were analyzed. In addition, the crevice corrosion of the casting samples was analyzed with cyclic potentiodynamic polarization tests using the |Er-Ecorr| value and scanning electron microscopy. Before casting, gold/plastic coping and gold coping were shown to have similar corrosion patterns in the anodic polarization test. Type III casting gold alloy was shown to have a lower higher than that of gold coping, but the passive region for the gold/plastic coping was smaller than that of gold coping. The contact current density between the cast gold alloys and gold/plastic before casting was higher than that between gold coping and cast gold alloy. The contact current density of the samples after casting was shown to be similar to that before casting. The crevice corrosion resistance of cast samples using gold coping was lower than that of cast samples using gold/plastic coping, and severe corrosion was observed by SEM at the abutment-casting gold alloy interface.


abutments gold/plastic coping and gold coping crevice corrosion galvanic corrosion 


  1. 1.
    R. L. Burguete and R. B. Johns,J. Prosthet. Dent. 71, 592 (1994).PubMedCrossRefGoogle Scholar
  2. 2.
    J. S. Lambert and S. J. Quon,J. Prosthet. Dent. 69, 398 (1993).CrossRefGoogle Scholar
  3. 3.
    A. B. Carr and W. A. Brantley,J. Prosthet. Dent. 69, 391 (1993).PubMedCrossRefGoogle Scholar
  4. 4.
    A. B. Carr and W. A. Brantley,J. Prosthet. Dent. 75, 77 (1996).PubMedCrossRefGoogle Scholar
  5. 5.
    J. Geis-Gestrofer and H. Weber,Dtsch Zahnartztl. 42, 91 (1987).Google Scholar
  6. 6.
    J. Geis-Gestrofer and H. Weber,Int. J. Oral Maxillofac Implants 4, 119 (1989).Google Scholar
  7. 7.
    D. R. Patric,Int. J. Oral Maxillofac Implants 7, 127 (1992).Google Scholar
  8. 8.
    A. Yoshitaka and T. Fumitaka,Quintessence. 2, 97 (1996).Google Scholar
  9. 9.
    J. Geis-Gestrofer and H. Weber,Int. J. Oral Maxillofac Implants 3, 135 (1988).Google Scholar
  10. 10.
    M. Hulterstorm and U. Nilsson,Int. J. Oral Maxillofac Implants 3, 135 (1991).Google Scholar
  11. 11.
    M. Hulterstorm and U. Nilsson,Int. J. Oral Maxillofac Implants 9, 449 (1994).Google Scholar
  12. 12.
    E. S. Lain, W. Schriever, and G. S. Caughron,J. Am. Dent. Assoc. 27, 1765 (1940).Google Scholar
  13. 13.
    H. C. Choe, H. S. Kim, D. C. Choi, and K. H. Kim,J. Mater. Sci. 32, 1221 (1997).CrossRefGoogle Scholar
  14. 14.
    L. Reclaru and J. M. Meyer,J. Dent. 22, 159 (1994).PubMedCrossRefGoogle Scholar
  15. 15.
    L. R. Rubin,Biomaterials in Reconstructive Surgery, p. 145, C. V. Mosby Co., St. Louis, MO, USA (1983).Google Scholar
  16. 16.
    P. Tetsch, K. L. Ackermann, and N. Behreke,Int. J. Oral Maxillofac Implants 5, 182 (1990).Google Scholar
  17. 17.
    H. H. Uhlig and R. W. Revie,Corrosion and Corrosion Control, p. 35, John Wiley & Sons, Inc., USA (1985).Google Scholar
  18. 18.
    S. A. Brown and K. Meritt,J. Biomed. Mater. Res. 14, 173 (1980).PubMedCrossRefGoogle Scholar
  19. 19.
    R. V. Mckinney, Jr. and J. Lemons,The Dental Implant, p. 1, PSG Publ., Co., Littleton, MA, USA (1985).Google Scholar
  20. 20.
    H. S. Kim, J. H. Yoon, J. H. Han, B. D. Mitton, R. M. Latanision, and Y. S. Kim,Metals and Materials Int. 10, 83 (2004).MATHCrossRefGoogle Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  • Mi-Kyoung Son
    • 1
  • Han-Cheol Choe
    • 2
  • Chae-Heon Chung
    • 1
  1. 1.Department of Prosthodontics, College of DentistryChosun UniversityGwangjuKorea
  2. 2.Department of Dental Materials Research Center of Nano-Interface Activation for Biomaterials College of DentistryChosun UniversityGwangjuKorea

Personalised recommendations